Advertisement

Green Liner Shipping Network Design

  • Erik Hellsten
  • David PisingerEmail author
  • David Sacramento
  • Charlotte Vilhelmsen
Chapter

Abstract

Green Liner Shipping Network Design refers to the problems in green logistics related to the design of maritime services in liner shipping with a focus on reducing the environmental impact. This chapter discusses how to more efficiently plan the vessel services with the use of mathematical optimization models. A brief introduction to the main characteristics of Liner Shipping Network Design is given, as well as the different variants and assumptions that can be considered when defining this problem. The chapter also includes an overview of the algorithms and approaches that have been presented in the literature to design such networks.

References

  1. Agarwal, R., & Ergun, Ö. (2008). Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 42(2), 175–196.CrossRefGoogle Scholar
  2. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Englewood Cliffs: Prentice Hall.Google Scholar
  3. Álvarez, J. F. (2009). Joint routing and deployment of a fleet of container vessels. Maritime Economics & Logistics, 11(2), 186–208.CrossRefGoogle Scholar
  4. Archetti, C., & Speranza, M. G. (2014). A survey on matheuristics for routing problems. EURO Journal on Computational Optimization, 2(4), 223–246.CrossRefGoogle Scholar
  5. Balakrishnan, A., & Karsten, C. V. (2017). Container shipping service selection and cargo routing with transshipment limits. European Journal of Operational Research, 263(2), 652–663.CrossRefGoogle Scholar
  6. Brouer, B. D., Álvarez, J. F., Plum, C. E. M., Pisinger, D., & Sigurd, M. M. (2014a). A base integer programming model and benchmark suite for liner-shipping network design. Transportation Science, 48(2), 281–312.CrossRefGoogle Scholar
  7. Brouer, B. D., Desaulniers, G., & Pisinger, D. (2014b). A matheuristic for the liner shipping network design problem. Transportation Research Part E: Logistics and Transportation Review, 72, 42–59.CrossRefGoogle Scholar
  8. Brouer, B. D., Desaulniers, G., Karsten, C. V., & Pisinger, D. (2015). A matheuristic for the liner shipping network design problem with transit time restrictions. In F. Corman, S. Voß, & R. R. Negenborn (Eds.), Computational logistics (pp. 195–208). Cham: Springer.CrossRefGoogle Scholar
  9. Brouer, B. D., Karsten, C. V., & Pisinger, D. (2016). Big data optimization in maritime logistics. In A. Emrouznejad (Ed.), Big data optimization: Recent developments and challenges (Studies in big data, Vol. 18, pp. 319–344). Cham: Springer.Google Scholar
  10. Brouer, B. D., Karsten, C. V., & Pisinger, D. (2017). Optimization in liner shipping. 4OR, 15(1), 1–35.CrossRefGoogle Scholar
  11. Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and perspectives. Transportation Science, 38(1), 1–18.CrossRefGoogle Scholar
  12. Christiansen, M., Fagerholt, K., Nygreen, B., & Ronen, D. (2013). Ship routing and scheduling in the new millennium. European Journal of Operational Research, 228(3), 467–483.CrossRefGoogle Scholar
  13. Dithmer, P., Reinhardt, L. B., & Kontovas, C. A. (2017). The liner shipping routing and scheduling problem under environmental considerations: The case of emissions control areas. In International Conference on Computational Logistics (pp. 336–350). Springer.Google Scholar
  14. Fagerholt, K., Gausel, N. T., Rakke, J. G., & Psaraftis, H. N. (2015). Maritime routing and speed optimization with emission control areas. Transportation Research Part C: Emerging Technologies, 52, 57–73.CrossRefGoogle Scholar
  15. Hansen, P., & Mladenovic, N. (2014). Variable neighborhood search. In E. K. Burke & G. Kendall (Eds.), Search methodologies – Introductory tutorials in optimization and decision support techniques (pp. 313–337). New York: Springer.Google Scholar
  16. IMO. (2014). Third imo greenhouse gas study 2014. Technical report, International Maritime Organization.Google Scholar
  17. Karsten, C. V. (2015). Competitive liner shipping network design.Ph. D. Thesis, DTU Management Engineering.Google Scholar
  18. Karsten, C. V., Pisinger, D., Røpke, S., & Brouer, B. D. (2015). The time constrained multi-commodity network flow problem and its application to liner shipping network design. Transportation Research Part E: Logistics and Transportation Review, 76, 122–138.CrossRefGoogle Scholar
  19. Karsten, C. V., Brouer, B. D., & Pisinger, D. (2017a). Competitive liner shipping network design. Computers & Operations Research, 87, 125–136.CrossRefGoogle Scholar
  20. Karsten, C. V., Brouer, B. D., Desaulniers, G., & Pisinger, D. (2017b). Time constrained liner shipping network design. Transportation Research. Part E: Logistics and Transportation Review, 105, 152–162.CrossRefGoogle Scholar
  21. Karsten, C. V., Røpke, S., & Pisinger, D. (2018). Simultaneous optimization of container ship sailing speed and container routing with transit time restrictions. Transportation Science, 52(4), 739–1034.CrossRefGoogle Scholar
  22. Kim, H. J. (2013). A lagrangian heuristic for determining the speed and bunkering port of a ship. Journal of the Operational Research Society, 65(5), 747–754.CrossRefGoogle Scholar
  23. Kontovas, C. A. (2014). The green ship routing and scheduling problem (GSRSP): A conceptual approach. Transportation Research Part D: Transport and Environment, 31, 61–69.CrossRefGoogle Scholar
  24. Krogsgaard, A., Pisinger, D., & Thorsen, J. (2018). A flow-first route-next heuristic for liner shipping network design. Transportation Science, 72(3), 358–381. Special Issue on Emerging Challenges in Transportation Planning.CrossRefGoogle Scholar
  25. Lee, C.-Y., & Song, D.-P. (2017). Ocean container transport in global supply chains: Overview and research opportunities. Transportation Research Part B: Methodological, 95, 442–474.CrossRefGoogle Scholar
  26. Li, C., Qi, X., & Lee, C.-Y. (2015). Disruption recovery for a vessel in liner shipping. Transportation Science, 49(4), 900–921.CrossRefGoogle Scholar
  27. Maersk. (2017). The world’s largest ship. https://www.maersk.com/en/explore/fleet/triple-e/environment
  28. Meng, Q., & Wang, S. (2011a). Optimal operating strategy for a long-haul liner service route. European Journal of Operational Research, 215(1), 105–114.CrossRefGoogle Scholar
  29. Meng, Q., & Wang, S. (2011b). Liner shipping service network design with empty container repositioning. Transportation Research Part E: Logistics and Transportation Review, 47(5), 695–708.CrossRefGoogle Scholar
  30. Meng, Q., Wang, S., Andersson, H., & Thun, K. (2014). Containership routing and scheduling in liner shipping: Overview and future research directions. Transportation Science, 48, 265–280.CrossRefGoogle Scholar
  31. Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326–329.CrossRefGoogle Scholar
  32. Montreuil, B. (2011). Towards a physical internet: Meeting the global logisitcs sustainability grand challenge. Logistics Research, 3, 71–87.CrossRefGoogle Scholar
  33. Neamatian Monemi, R., & Gelareh, S. (2017). Network design, fleet deployment and empty repositioning in liner shipping. Transportation Research Part E, 108, 60–79.CrossRefGoogle Scholar
  34. Notteboom, T. E. (2006). The time factor in liner shipping services. Maritime Economics & Logistics, 8(1), 19–39.CrossRefGoogle Scholar
  35. Notteboom, T. E., & Vernimmen, B. (2009). The effect of high fuel costs on liner service configuration in container shipping. Journal of Transport Geography, 17,(5), 325–337.CrossRefGoogle Scholar
  36. Plum, C. E. M., Pisinger, D., & Sigurd, M. M. (2014). A service flow model for the liner shipping network design problem. European Journal of Operational Research, 235(2), 378–386.CrossRefGoogle Scholar
  37. Psaraftis, H. N., & Kontovas, C. A. (2013). Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies, 26, 331–351.CrossRefGoogle Scholar
  38. Psaraftis, H. N., & Kontovas, C. A. (2015). Slow steaming in maritime transportation: Fundamentals, trade-offs, and decision models. In C.-Y. Lee & Q. Meng (Eds.), Handbook of ocean container transport logistics: Making global supply chains effective (pp. 315–358). Heidelberg: Springer.Google Scholar
  39. Reinhardt, L. B., & Pisinger, D. (2012). A branch and cut algorithm for the container shipping network design problem. Flexible Services and Manufacturing Journal, 24(3), 349–374.CrossRefGoogle Scholar
  40. Reinhardt, L. B., Plum, C. E. M., Pisinger, D., Sigurd, M. M., & Vial, G. T. P. (2016). The liner shipping berth scheduling problem with transit times. Transportation Research Part E: Logistics and Transportation Review, 86, 116–128.CrossRefGoogle Scholar
  41. Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems. European Journal of Operational Research, 12(2), 119–126.CrossRefGoogle Scholar
  42. Ronen, D. (1993). Ship scheduling: The last decade. European Journal of Operational Research, 71(3), 325–333.CrossRefGoogle Scholar
  43. Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216.CrossRefGoogle Scholar
  44. Stopford, M. (2009). Maritime economics (3rd ed.). London: Taylor & Francis Ltd. ISBN:9780415275583.Google Scholar
  45. Sun, Z., & Zheng, J. (2016). Finding potential hub locations for liner shipping. Transportation Research Part B: Methodological, 93, 750–761.CrossRefGoogle Scholar
  46. Thun, K., Andersson, H., & Christiansen, M. (2017). Analyzing complex service structures in liner shipping network design. Flexible Services and Manufacturing Journal, 29(3–4), 535–552.CrossRefGoogle Scholar
  47. Toth, P., & Vigo, D. (2015). Vehicle routing: Problems, methods and applications (Vol. 18). Philadelphia: SIAM.Google Scholar
  48. Unctad. (2017a). Review of maritime transport. Technical report, United Nations Conference on Trade and Development.Google Scholar
  49. Unctad. (2017b). UnctadSTAT. http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx. [Online; Accessed 9 Feb 2017].
  50. Wan, Z., Zhu, M., Chen, S., & Sperling, D. (2016). Pollution: Three steps to a green shipping industry. Nature, 530, 275.CrossRefGoogle Scholar
  51. Wang, S., & Meng, Q. (2012). Sailing speed optimization for container ships in a liner shipping network. Transportation Research Part E: Logistics and Transportation Review, 48(3), 701–714.CrossRefGoogle Scholar
  52. Wang, S., & Meng, Q. (2014). Liner shipping network design with deadlines. Computers & Operations Research, 41, 140–149.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erik Hellsten
    • 1
  • David Pisinger
    • 1
    Email author
  • David Sacramento
    • 1
  • Charlotte Vilhelmsen
    • 1
  1. 1.DTU Management EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations