Advertisement

Robust Stabilization for Constrained Switched Positive Linear Systems via Output-Feedback

  • Jinjin LiuEmail author
  • Shanen Yu
  • Zhiqiang Li
  • Ting Zhang
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 480)

Abstract

This paper deals with the robust stabilization problem by constrained output-feedback control of switched positive linear systems with uncertainties. Firstly, the synthesis of output-feedback controllers is tackled when the parameters of systems subject to interval and polytopic uncertainties. Secondly, the bounded controllers ensure that the closed-loop system is stable and positive. In addition, the proposed conditions are formulated as linear programming.

Keywords

Switched positive linear systems Robust stabilization Bounded controls Linear programming 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of the People’s Republic of China under Grants Nos. 61803144, 61873314, 61603125, and the Key Scientific Research Projects for Colleges and Universities of Henan Province No.19A120001.

References

  1. 1.
    Chen, G., Yang, Y.: Finite-time stability of switched positive linear systems. Int. J. Robust Nonlinear Control 2(1), 179–190 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, X., Lam, J., Meng, M.: Controller synthesis for positive Takagi-Sugeno fuzzy systems under \(l_1\) performance. Int. J. Syst. Sci. 48(3), 515–524 (2017)CrossRefGoogle Scholar
  3. 3.
    Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. Wiley, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Hmamed, A., Rami, M.A., Benzaouia, A., Tadeo, F.: Stabilization under constrained states and controls of positive systems with time delays. Eur. J. Control 18(2), 182–190 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hmamed A., Benzaouia A., Rami M.A., Tadeo F.: Memoryless control to drive states of delayed continuous-time systems within the nonnegative orthant. In: Proceedings 17th International Federation of Automatic Control, pp. 3934–3939 (2008)CrossRefGoogle Scholar
  6. 6.
    Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, UK (1991)CrossRefGoogle Scholar
  7. 7.
    KaczorekT.: Positive 1D and 2D Systems. Springer, Berlin (2002)Google Scholar
  8. 8.
    Liu, X.: Constraints control of positive systems with delays. IEEE Trans. Autom. Control 54(7), 1596–1600 (2009)CrossRefGoogle Scholar
  9. 9.
    Liu, X., Wang, L., Yu, W., Zhong, S.: Constraints control of positive discrete-time systems with delays. IEEE Trans. Circuits Syst. II Expr. Briefs 55(2), 193–197 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Zhang, K.: Robust Stabilization for constrained discrete-time switched positive linear systems with uncertainties. IET Control Theory Appl. 9(17), 2598–2605 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, J., Zhang, K.: Controller synthesis for constrained discrete-time switched positive linear systems. Nonlinear Anal. Hybrid Syst. 19, 1–12 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rami M.A., Tadeo F., Benzaouia A.: Control of constrained positive discrete systems. In: Proceeding 2007 American Control Conference, pp. 5851–5856 (2007)Google Scholar
  13. 13.
    Rami, M.A., Tadeo, F.: Controller synthesis for positive linear systems with bounded controls. IEEE Trans. Circuits Syst. II Expr. Briefs 54(2), 151–155 (2007)CrossRefGoogle Scholar
  14. 14.
    Rami, M.A.: Solvability of static output-feedback stabilization for LTI positive systems. Syst. Control Lett. 60, 704–708 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Z., Ge, S.: Stability Theory of Switched Dynamical Systems. Springer, London (2011)CrossRefGoogle Scholar
  16. 16.
    Shen J., Lam J.: Constrained control of dwitched positive systems with discrete and distributed delays. In: Proceedings 33rd Chinese Control Conference, pp. 6031–6036 (2014)Google Scholar
  17. 17.
    Tong, Y., Wang, C., Zhang, L.: Stabilisation of discrete-time switched positive linear systems via time and state dependent switching laws. IET Control Theory Appl. 6(11), 1603–1609 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vargas, E.H., Colaneri, P., Middleton, R., Blanchini, F.: Discrete-time control for switched positive systems with application to mitigating viral escape. Int. J. Robust Nonlinear Control 21(10), 1093–1111 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, C., Huang, T.: Static output feedback control of positive linear continuous-time systems. Int. J. Robust Nonlinear Control 23(14), 1537–1544 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xiang, W., Lam, J., Shen, J.: Stability analysis and L1-gain characterization for switched positive systems under dwell-time constraint. Automatica 85, 1–8 (2017)CrossRefGoogle Scholar
  21. 21.
    Zhao, X., Zhang, L., Shi, P., Liu, M.: Stability of switched positive linear systems with average dwell time switching. Automatica 48(6), 1132–1137 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, L., Wang, C., Chen, L.: Stability and stabilization of a class of multimode linear discrete-time systems with polytopic uncertainties. IEEE Trans. Ind. Electron. 56(9), 3684–3692 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Han, Z., Wu, H.: Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching. Circuits Syst. Signal Proc. 33(1), 71–95 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, J., Han, Z., Zhu, F., Huang, J.: Feedback control for switched positive linear systems. IET Control Theory Appl. 7(3), 464–469 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jinjin Liu
    • 1
    Email author
  • Shanen Yu
    • 2
  • Zhiqiang Li
    • 1
  • Ting Zhang
    • 1
  1. 1.Department of Mathematics and Information ScienceHenan University of Economics and LawZhengzhouChina
  2. 2.School of AutomationHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations