Advertisement

Oscillation Analysis of Abscisic Acid Signal Transduction Network: A Semi-tensor Product Approach

  • Shuqi Chen
  • Jiyan Zhang
  • Yuhu Wu
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 480)

Abstract

This paper investigates the abscisic acid (ABA) signal transduction network which is described by Boolean network (BN) based on semi-tensor product (STP). By using this algebraic approach, the oscillation of ABA signal transduction network in the case of the node-disrupted, namely cytosolic PH (\(pH_c\)) perturbation is observed.

Keywords

Abscisic acid signal transduction network Boolean network Semi-tensor product Oscillation 

References

  1. 1.
    Azuma, S.-i., Yoshida, T., Sugie, T.: Structural oscillatority analysis of boolean networks. IEEE Trans. Control Netw. Syst. 2865–2868 (2015)Google Scholar
  2. 2.
    Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans. Autom. Control 55(10), 2251–2258 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheng, D., Qi, H., Li, Z.: Analysis and control of Boolean networks: a semi-tensor product approach. Acta Autom. Sin. 37(5), 1352–1356 (2011)MathSciNetGoogle Scholar
  4. 4.
    Cheng, D., Qi, H., Zhao, Y.: An Introduction to Semi-Tensor Product of Matrices and Its Applications. World Scientific, Hackensack (2012)Google Scholar
  5. 5.
    Chen, H., Liang, J., Lu, J., Qiu, J.: Synchronization for the realization-dependent probabilistic Boolean networks. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 819–831 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feng, J.E., Lv, H., Cheng, D.: Multiple fuzzy relation and its application to coupled fuzzy control. Asian J. Control 15(5), 1313–1324 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Felle, H.H.: pH: signal and messenger in plant cells. Plant Biol. 3(6), 577–591 (2001)CrossRefGoogle Scholar
  8. 8.
    Grantcharova, N., Peters, V., Monteiro, C., Zakikhany, K., Rmling, U.: Bistable expression of CsgD in biofilm development of salmonella enterica serovar typhimurium. J. Bacteriol. 192(2), 456–466 (2010)CrossRefGoogle Scholar
  9. 9.
    Jenkins, A., Macauley, M.: Bistability and asynchrony in a Boolean model of the L-arabinose operon in Escherichia coli. Bull. Math. Biol. 79(8), 1778–1795 (2017)Google Scholar
  10. 10.
    Li, H., Wang, Y.: Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. Automatica 48(4), 688–693 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, S., Assmann, S.M., Albert, R.: Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. Plos Biol. 4(10), 312 (2006)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Li, B., Lu, J., Cao, J.: Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans. Autom. Control 62, 6595–6601 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Saadatpour, A., Albert, I., Albert, R.: Attractor analysis of asynchronous Boolean models of signal transduction networks. J. Theor. Biol. 266(4), 641–656 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Veliz-Cuba, A., Stigler, B.: Boolean models can explain bistability in the lac operon. J. Comput. Biol. 18(6), 783–794 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, Y., Zhang, C., Liu, Z.: A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems (Pergamon. Press, Inc). Automatica 48, 1227–1236 (2012)Google Scholar
  16. 16.
    Wu, Y., Shen, T.: Policy iteration approach to control residual gas fraction in ic engines under the framework of stochastic logical dynamics. IEEE Trans. Control Syst. Technol. 25(3), 1100–1107 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wu, Y., Kumar, M., Shen, T.: A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines. Appl. Therm. Eng. 93(8), 251–259 (2016)CrossRefGoogle Scholar
  18. 18.
    Yunlei, Z.O.U., Jiandong, Z.H.U.: Graph theory methods for decomposition w.r.t. outputs of Boolean control networks. J. Syst. Sci. Complex. 30(3), 519–534 (2017)Google Scholar
  19. 19.
    Zhong, J., Ho, D.W.C., Lu, J., Xu, W.: Global robust stability and stabilization of Boolean network with disturbances. Automatica 84, 142–148 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The School of Control Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Information Technology Experimental Teaching CenterDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations