Advertisement

Identifiability of Boolean Networks via Output Data and Initial States

  • Yongyuan Yu
  • Jun-E FengEmail author
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 480)

Abstract

In this paper, identifiability of Boolean networks is investigated via output data and initial states. The identifiability can be equivalently converted into solving a system of logical matrix equations, which are constructed from the output data. Based on which, some necessary and sufficient conditions are established to calculate structure matrices of the concerned plant. Finally, an example is discussed to show that the obtained results are effective.

Keywords

Boolean network Identifiability Logical matrix equation Observability 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) of China under Grant 61773371.

References

  1. 1.
    Albert, R., Othmer, H.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, H., Liang, J., Lu, J., Qiu, J.: Synchronization for the realization-dependent probabilistic Boolean networks. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 819–831 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheng, D., Qi, H.: Controllability and observability of Boolean control networks. Automatica 45(7), 1659–1667 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans. Autom. Control 55(10), 2251–2258 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheng, D., Qi, H., Li, Z.: Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. Springer Science & Business Media, Berlin (2010)Google Scholar
  6. 6.
    Cheng, D., Zhao, Y.: Identification of Boolean control networks. Automatica 47(4), 702–710 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cheng, D., Qi, H., Li, Z.: Model construction of Boolean network via observed data. IEEE Trans. Neural Netw. 22(4), 525–536 (2011)CrossRefGoogle Scholar
  8. 8.
    Cheng, D., He, F., Qi, H., Xu, T.: Modeling, analysis and control of networked evolutionary games. IEEE Trans. Autom. Control 60(9), 2402–2415 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fornasini, E., Valcher, M.: Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans. Autom. Control 58(6), 1390–1401 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fornasini, E., Valcher, M.: Identification problems for Boolean networks and Boolean control networks. IFAC Proc. Vol. 47(3), 5399–5404 (2014)CrossRefGoogle Scholar
  11. 11.
    Hassoun, M.H.: Fundamentals of Artificial Neural Networks. The MIT Press, Cambridge (1995)Google Scholar
  12. 12.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. 100(25), 14796–14799 (2003)CrossRefGoogle Scholar
  14. 14.
    Laschov, D., Margaliot, M., Even, G.: Observability of Boolean networks: a graph-theoretic approach. Automatica 49(8), 2351–2362 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, pp. 18–29 (1998)Google Scholar
  16. 16.
    Nam, D., Seo, S., Kim, S.: An efficient top-down search algorithm for learning Boolean networks of gene expression. Mach. Learn. 65(1), 229–245 (2006)CrossRefGoogle Scholar
  17. 17.
    Tatsuya, A., Satoru, M., Satoru, K.: Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J. Comput. Biol. Int. Conf. Comput. Mol. Cell Biol. 7(3–4), 331–343 (2000)Google Scholar
  18. 18.
    Yao, J., Feng, J., Meng, M.: On solutions of the matrix equation \(AX=B\) with respect to semi-tensor product. J. Franklin Inst. 353(5), 1109–1131 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu, Y., Feng, J., Pan, J., Cheng, D.: Block decoupling of Boolean control networks. IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2018.2880411 (2017)
  20. 20.
    Zhang, X., Han, H., Zhang, W.: Identification of Boolean networks using premined network topology information. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 464–469 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinan, ShandongPeople’s Republic of China

Personalised recommendations