Advertisement

On-Glass Integration of Thin Film Devices for Monitoring of Cell Bioluminescence

  • D. CaputoEmail author
  • N. Lovecchio
  • M. Nardecchia
  • L. Cevenini
  • E. Michelini
  • M. Mirasoli
  • A. Roda
  • A. Buzzin
  • F. Costantini
  • A. Nascetti
  • G. de Cesare
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

This paper reports the development of a miniaturized lab-on-glass,suitable for the on-chip detection of living cell bioluminescence and their on-chip thermal treatments. The glass substrate hosts, on one side, hydrogenated amorphous silicon diodes, working as both temperature sensors and photosensors, and, on the other side, transparent thin films acting as heating sources. The main challenge of the work is the determination of the correct fabrication recipes in order to satisfy the compatibility of different microelectronic steps. The measured uniformity of temperature distribution, sensitivity of the temperature sensors, reverse dark current and spectral response of the photosensors demonstrate the successful technological integration and the suitability of the developed lab-on-glass to control the cell temperature and detect the BL emission with high sensitivity.

Keywords

Lab-on-chip Amorphous silicon Bioluminescence Cells Indium tin oxide Photosensor Thin film heater 

References

  1. 1.
    Mark, D., Haeberle, S., Roth, G., Von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. In: Microfluidics Based Microsystems, pp. 305–376. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-90-481-9029-4_17CrossRefGoogle Scholar
  2. 2.
    Waggoner, P.S., Craighead, H.G.: Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip 7(10), 1238–1255 (2007).  https://doi.org/10.1039/B707401HCrossRefGoogle Scholar
  3. 3.
    Wongkaew, N., He, P., Kurth, V., Surareungchai, W., Baeumner, A.J.: Multi-channel PMMA microfluidic biosensor with integrated IDUAs for electrochemical detection. Anal. Bioanal. Chem. 405(18), 5965–5974 (2013).  https://doi.org/10.1007/s00216-013-7020-0CrossRefGoogle Scholar
  4. 4.
    Mirasoli, M., Nascetti, A., Caputo, D., Zangheri, M., Scipinotti, R., Cevenini, L., de Cesare, G., Roda, A.: Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph. Anal. Bioanal. Chem. 406(23), 5645–5656 (2014).  https://doi.org/10.1007/s00216-014-7971-9CrossRefGoogle Scholar
  5. 5.
    Pires, N.M.M., Dong, T., Hanke, U., Hoivik, N.: Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 14(8), 15458–15479 (2014).  https://doi.org/10.3390/s140815458CrossRefGoogle Scholar
  6. 6.
    Pires, N., Dong, T., Hanke, U., Hoivik, N.: Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care detection of hormonal compounds. J. Biomed. Optics 18(9), 097001 (2013).  https://doi.org/10.1117/1.JBO.18.9.097001CrossRefGoogle Scholar
  7. 7.
    Branchini, B.R., Southworth, T.L., Fontaine, D.M., Kohrt, D., Welcome, F.S., Florentine, C.M., Henricks, E.R., DeBartolo, D.B., Michelini, E., Cevenini, L., Roda, A., Grossel, M.J.: Red-emitting chimeric firefly luciferase for in vivo imaging in low ATP cellular environments. Anal. Biochem. 534, 36–39 (2017).  https://doi.org/10.1016/j.ab.2017.07.001CrossRefGoogle Scholar
  8. 8.
    Petrucci, G., Caputo, D., Lovecchio, N., Costantini, F., Legnini, I., Bozzoni, I., Nascetti, A., de Cesare, G.: Multifunctional system-on-glass for Lab-on-chip applications. Biosens. Bioelectron. 93, 315–321 (2017).  https://doi.org/10.1016/j.bios.2016.08.060CrossRefGoogle Scholar
  9. 9.
    Costantini, F., Sberna, C., Petrucci, G., Reverberi, M., Domenici, F., Fanelli, C., Manetti, C., de Cesare, A., Nascetti, A., DeRosa, M., Caputo, D.: Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sens. Actuators B Chem. 230, 31–39 (2016).  https://doi.org/10.1016/j.snb.2016.02.036CrossRefGoogle Scholar
  10. 10.
    Mirasoli, M., Guardigli, M., Michelini, E., Roda, A.: Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J. Pharm. Biomed. Anal. 87, 36–52 (2017).  https://doi.org/10.1016/j.jpba.2013.07.008CrossRefGoogle Scholar
  11. 11.
    Lovecchio, N., Petrucci, G., Caputo, D., Alameddine, S., Carpentiero, M., Martini, L., Parisi, E., De Cesare, G., Nascetti, A.: Thermal control system based on thin film heaters and amorphous silicon diodes. In: 6th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) 2015, pp. 277–282. Springer (2015).  https://doi.org/10.1109/IWASI.2015.7184977
  12. 12.
    Caputo, D., Forghieri, U., Palma, F.: Low-temperature admittance measurement in thin film amorphous silicon structures. J. Appl. Phys. 82(2), 733–741 (1997).  https://doi.org/10.1063/1.365607CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Caputo
    • 1
    Email author
  • N. Lovecchio
    • 1
  • M. Nardecchia
    • 1
    • 2
  • L. Cevenini
    • 3
  • E. Michelini
    • 3
  • M. Mirasoli
    • 3
  • A. Roda
    • 3
  • A. Buzzin
    • 1
  • F. Costantini
    • 1
    • 2
  • A. Nascetti
    • 2
  • G. de Cesare
    • 1
  1. 1.Department of Information Engineering, Electronics and TelecommunicationsSapienza University of RomeRomeItaly
  2. 2.School of Aerospace EngineeringSapienza University of RomeRomeItaly
  3. 3.Department of Chemistry G. CiamicianAlma Mater Studiorum - University of BolognaBolognaItaly

Personalised recommendations