Advertisement

DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection

  • V. Ferrara
  • A. Ottaviani
  • F. Cavaleri
  • G. Arrabito
  • P. Cancemi
  • Y.-P. Ho
  • B. R. Knudsen
  • M. S. Hede
  • C. Pellerito
  • A. Desideri
  • S. Feo
  • Giovanni Marletta
  • B. PignataroEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

Dip-pen lithography (DPL) technique has been employed to develop a new flexible biosensor realized on nylon with the aim to detect the activity of human topoisomerase. The sensor is constituted by an ordered array of a DNA substrate on flexible nylon supports that can be exploited as a drug screening platform for anticancer molecules. Here, we demonstrate a rapid protocol that permits to immobilize minute quantities of DNA oligonucleotides by DPL on nylon surfaces. Theoretical and experimental aspects have been investigated to successfully print DNA oligonucleotides by DPL on such a porous and irregular substrate.

Keywords

Flexible device Molecular printing Biosensor Topoisomerase 

References

  1. 1.
    Segev-Bar, M., Haick, H.: Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013).  https://doi.org/10.1021/nn402728gCrossRefGoogle Scholar
  2. 2.
    Sun, Y., Wang, HH.: Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, (2007). https://doi.org/10.1063/1.2742596CrossRefGoogle Scholar
  3. 3.
    Farcau, C., Moreira, H., Viallet, B., Grisolia, J., Ciuculescu-pradines, D., Amiens, C., Ressier, L.: Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing. J. Phys. Chem. C 115, 14494–14499 (2011).  https://doi.org/10.1021/jp202166sCrossRefGoogle Scholar
  4. 4.
    Segev-Bar, M., Landman, A., Nir-Shapira, M., Shuster, G., Haick, H.: Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. ACS Appl. Mater. Interfaces. 5, 5531–5541 (2013).  https://doi.org/10.1021/am400757qCrossRefGoogle Scholar
  5. 5.
    Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: micro fluidic paper-based analytical devices 82, 3–10 (2010).  https://doi.org/10.1007/s10337-013-2413-yCrossRefGoogle Scholar
  6. 6.
    Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25, 29–46 (2013).  https://doi.org/10.1002/elan.201200349CrossRefGoogle Scholar
  7. 7.
    Farahmand, E., Ibrahim, F., Hosseini, S., Rothan, H.A., Yusof, R., Koole, L.H., Djordjevic, I.: A novel approach for application of nylon membranes in the biosensing domain. Appl. Surf. Sci. 353, 1310–1319 (2015).  https://doi.org/10.1016/j.apsusc.2015.07.004CrossRefGoogle Scholar
  8. 8.
    Arrabito, G., Pignataro, B.: Solution processed micro- and nano-bioarrays for multiplexed biosensing. Anal. Chem. 84, 5450–5462 (2012).  https://doi.org/10.1021/ac300621zCrossRefGoogle Scholar
  9. 9.
    Khan, S., Lorenzelli, L., Dahiya, R.S.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015).  https://doi.org/10.1109/JSEN.2014.2375203CrossRefGoogle Scholar
  10. 10.
    Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A.: “Dip-Pen” Nanolithography. Science 283, 661 LP-663 (1999)CrossRefGoogle Scholar
  11. 11.
    He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).  https://doi.org/10.1038/nature06597CrossRefGoogle Scholar
  12. 12.
    Wang, J.C.: DNA topoisomerases. Nat. Rev. Mol. Cell Biol. 582, 209–219 (2009).  https://doi.org/10.1007/978-1-60761-340-4CrossRefGoogle Scholar
  13. 13.
    Leppard, J.B., Champoux, J.J.: Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85 (2005).  https://doi.org/10.1007/s00412-005-0345-5CrossRefGoogle Scholar
  14. 14.
    Zuccaro, L., Tesauro, C., Kurkina, T., Fiorani, P., Yu, H.K., Knudsen, B.R., Kern, K., Desideri, A., Balasubramanian, K.: Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano 9, 11166–11176 (2015).  https://doi.org/10.1021/acsnano.5b05709CrossRefGoogle Scholar
  15. 15.
    Wang, L., Arrabito, G.: Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst 140, 5821–5848 (2015).  https://doi.org/10.1039/C5AN00861ACrossRefGoogle Scholar
  16. 16.
    Anderson, D.M.: Imbibition of a liquid droplet on a deformable porous substrate. Phys. Fluids 17, 87104 (2005).  https://doi.org/10.1063/1.2000247CrossRefzbMATHGoogle Scholar
  17. 17.
    Arrabito, G., Reisewitz, S., Dehmelt, L., Bastiaens, P.I., Pignataro, B., Schroeder, H., Niemeyer, C.M.: Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization. Small 9, 4243–4249 (2013).  https://doi.org/10.1002/smll.201300941CrossRefGoogle Scholar
  18. 18.
    Na, G.C.: Interaction of calf skin collagen with glycerol: linked function analysis. Biochemistry 25, 967–973 (1986).  https://doi.org/10.1021/bi00353a004CrossRefGoogle Scholar
  19. 19.
    Andersen, A.H., Gocke, E., Bonven, B.J., Nielsen, O.F., Westergaard, O.: Topoisomerase I has a strong binding preference for a conserved hexadecameric sequence in the promotor region of the rRNA gene from Tetrahymena pyriformis. Nucleic Acids Res. 13, 1543–1557 (1985).  https://doi.org/10.1093/nar/13.5.1543CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Ferrara
    • 1
  • A. Ottaviani
    • 2
  • F. Cavaleri
    • 3
  • G. Arrabito
    • 3
  • P. Cancemi
    • 4
  • Y.-P. Ho
    • 5
  • B. R. Knudsen
    • 6
  • M. S. Hede
    • 6
  • C. Pellerito
    • 3
  • A. Desideri
    • 2
  • S. Feo
    • 4
  • Giovanni Marletta
    • 1
  • B. Pignataro
    • 3
    Email author
  1. 1.Department of Chemical ScienceUniversity of CataniaCataniaItaly
  2. 2.Department of BiologyUniversity of Rome Tor VergataRomeItaly
  3. 3.Dipartimento di Fisica e ChimicaUniversità di PalermoPalermoItaly
  4. 4.Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)Università di PalermoPalermoItaly
  5. 5.Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARChina
  6. 6.Department of Molecular Biology and Genetics and INANOAarhus UniversityAarhusDenmark

Personalised recommendations