Advertisement

Low Cost Inkjet Printed Sensors: From Physical to Chemical Sensors

  • Bruno AndòEmail author
  • Salvatore Baglio
  • V. Marletta
  • R. Crispino
  • S. Castorina
  • A. Pistorio
  • Giovanna Di Pasquale
  • Antonino Pollicino
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

Compared to traditional silicon electronics, printed sensors are cheap and suitable for many low cost and disposable devices. Main printing techniques used are screen printing and inkjet printing. In particular we focus on inkjet printing for the rapid prototyping of sensors. Inkjet is a direct, contactless, printing process, with high spatial resolution and compatibility with many substrates. Successful examples of sensors developed by low cost inkjet printers and metal-based inks are reported by authors. In this paper two examples of low cost inkjet printed sensors are given. The first device is an accelerometer aimed to address typical applications in the field of human and seismic monitoring. Main outcomes of the proposed solution are the low frequency operation and the high sensitivity. The realization of a CO2 gas sensor is also presented. The device makes use of a PEDOT/PSS and Graphene stack and exploits resistive readout.

Keywords

Direct printing Printing techniques Inkjet printing Transducers Low cost Rapid prototyping Sensors Strain measurement Gas sensors PEDOT/PSS Graphene Interdigitated electrodes PET Accelerometer Seismic monitoring 

References

  1. 1.
    Mäntysalo, M., et al.: Capability of inkjet technology in electronics manufacturing. In: Proceedings of the IEEE 59th Electronic Components and Technology Conference, San Diego, CA, USA, pp. 1330–1336 (2009)Google Scholar
  2. 2.
    Andò, B., Baglio, S.: Inkjet-printed sensors: A useful approach for low cost, rapid prototyping. IEEE Instrum. Meas. Mag. 14(5), 36–40 (2011)CrossRefGoogle Scholar
  3. 3.
    Ando, B., et al.: All-inkjet printed strain sensors. IEEE Sens. J. 13(12), 4874–4879 (2013)CrossRefGoogle Scholar
  4. 4.
    Andò, B., et al.: Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors 17, 748 (2017)CrossRefGoogle Scholar
  5. 5.
    Andò, B., et al.: A Low-Cost Accelerometer Developed by Inkjet Printing Technology. IEEE Trans. Instrum. Meas. 65(5), 1242–1248 (2016)CrossRefGoogle Scholar
  6. 6.
    Andò, B., et al.: An inkjet printed CO2 gas sensor. Procedia Eng. 120, 628–631 (2015)CrossRefGoogle Scholar
  7. 7.
    FUJIFILM Dimatix, Inc. http://www.dimatix.com
  8. 8.
    microdrop Technologies GmbH. http://www.microdrop.de
  9. 9.
    Al-Halhouli, A., et al.: Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sens. Rev. 38(4), 438–452 (2018)CrossRefGoogle Scholar
  10. 10.
    Andò, B., et al.: A nonlinear energy harvester by direct printing technology. Procedia Eng. 47, 933–936 (2012)CrossRefGoogle Scholar
  11. 11.
    Yang, L., et al.: Integration of sensors and inkjet-printed RFID tags on paper-based substrates for UHF “cognitive intelligence” applications. In: 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, pp. 1193–1196 (2007)Google Scholar
  12. 12.
    Kim, S., et al.: Inkjet-printed RF energy harvesting and wireless power transmission devices on paper substrate. In: 2013 European Microwave Conference, Nuremberg, pp. 983–986 (2013)Google Scholar
  13. 13.
    Määttänen, A., et al.: A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens. Actuators B Chem. 177, 153–162 (2013)CrossRefGoogle Scholar
  14. 14.
    da Costa, T.H., et al.: A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J. Solid State Sci. Technol. 4(10), S3044–S3047 (2015)CrossRefGoogle Scholar
  15. 15.
    Shamkhalichenar, H., et al.: An inkjet-printed non-enzymatic hydrogen peroxide sensor on paper. J. Electrochem. Soc. 164(5), B3101–B3106 (2017)CrossRefGoogle Scholar
  16. 16.
    Mirica, K.A., et al.: Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc. Natl. Acad. Sci. 110(35), E3265–E3270 (2013)CrossRefGoogle Scholar
  17. 17.
    Arena, A., et al.: Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens. Actuators B Chem. 145(1), 488–494 (2010)CrossRefGoogle Scholar
  18. 18.
    Steffens, C., et al.: Low-cost sensors developed on paper by line patterning with graphite and polyaniline coating with supercritical CO2. Synth. Met. 159(21–22), 2329–2332CrossRefGoogle Scholar
  19. 19.
    Rieu, M., et al.: Inkjet printed SnO2 gas sensor on plastic substrate. Procedia Eng. 120, 75–78 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, T., et al.: Fabrication of a glucose biosensor by piezoelectric inkjet printing. In: Third International Conference on Sensor Technologies and Applications, Athens, Glyfada, pp. 82–85 (2009)Google Scholar
  21. 21.
    Dua, V., et al.: All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chemie Int. Ed. 49, 2154 – 2157CrossRefGoogle Scholar
  22. 22.
    Qin, Y., et al.: Inkjet-printed bifunctional carbon nanotubes for pH sensing. Mater. Lett. 176, 68–70CrossRefGoogle Scholar
  23. 23.
    Shao, B., et al.: Process-dependence of inkjet printed folded dipole antenna for 2.45 GHz RFID tags. In: 3rd European Conference on Antennas and Propagation, Berlin, pp. 2336–2339 (2009)Google Scholar
  24. 24.
    Zheng, L., et al.: Design and implementation of a fully reconfigurable chipless RFID tag using inkjet printing technology. In: 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, pp. 1524–1527 (2008)Google Scholar
  25. 25.
    Amin, Y., et al.: Inkjet printed paper based quadrate bowtie antennas For UHF RFID tags. In: 2009 11th International Conference on Advanced Communication Technology, Phoenix Park, pp. 109–112 (2009)Google Scholar
  26. 26.
    Virtanen, J., et al.: Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans. Instrum. Meas. 60(8), 2768–2777 (2011)CrossRefGoogle Scholar
  27. 27.
    Jonas, F., Heywang, G.: Technical applications for conductive polymers. Electrochim. Acta 39(8–9), 1345–1347 (1994)CrossRefGoogle Scholar
  28. 28.
    Groenendaal, L., et al.: Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12(7), 481–494 (2000)CrossRefGoogle Scholar
  29. 29.
    Kim, G.H., et al.: Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Phys. Chem. Chem. Phys. 14(10), 3530–3536 (2012)CrossRefGoogle Scholar
  30. 30.
    Hill, E.W., et al.: Graphene sensors. IEEE Sens. J. 11(12), 3161–3170 (2011)CrossRefGoogle Scholar
  31. 31.
    Fowler, J.D., et al.: Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)CrossRefGoogle Scholar
  32. 32.
    Yoon, H.J., et al.: Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem. 157(1), 310–313 (2011)CrossRefGoogle Scholar
  33. 33.
    Muhammad Hafiz, S., et al.: A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B Chem. 193, 692–700 (2014)CrossRefGoogle Scholar
  34. 34.
    Qiao, D., et al.: A single-axis low-cost accelerometer fabricated using printed-circuit-board techniques. IEEE Electron Device Lett. 30(12), 1293–1295 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bruno Andò
    • 1
    Email author
  • Salvatore Baglio
    • 1
  • V. Marletta
    • 1
  • R. Crispino
    • 1
  • S. Castorina
    • 1
  • A. Pistorio
    • 1
  • Giovanna Di Pasquale
    • 2
  • Antonino Pollicino
    • 2
  1. 1.DIEEI University of CataniaCataniaItaly
  2. 2.DII University of CataniaCataniaItaly

Personalised recommendations