Advertisement

Organised Colloidal Metal Nanoparticles for LSPR Refractive Index Transducers

  • S. RellaEmail author
  • M. G. Manera
  • A. Colombelli
  • A. G. Monteduro
  • G. Maruccio
  • C. Malitesta
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

This work is focused on optimizing adhesion and distribution of colloidal gold nanoparticles on silanized glass substrates intended as nanostructured plasmonic transducer for sensing applications. This system will be used as platform for subsequent functionalization and/or enzyme immobilization. All preparation steps have been monitored by UV-Vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS).

Keywords

Gold nanoparticles Silanized substrate Surface plasmon resonance 

Notes

Acknowledgements

S. R. greatly thanks Regione Puglia for financing the project ‘‘Biosensori per il monitoraggio della qualità delle acque a base di nanoparticelle di oro funzionalizzate mediante enzimi specifici” (FutureInResearch No. YFN6JP8). Authors thank Michele Lanzillotta for experimental work during his Master’s degree thesis.

References

  1. 1.
    Penn, S.G., He, L., Natan, M.J.: Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 7, 609–615 (2003)CrossRefGoogle Scholar
  2. 2.
    Shipway, A.N., Katz, E., Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18–52 (2000)CrossRefGoogle Scholar
  3. 3.
    Shankaran, D.R., Gobi, K.V., Miura, N.: Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 121, 158–177 (2007)CrossRefGoogle Scholar
  4. 4.
    Piliarik, M., Vaisocherová, H., Homola, J.: Surface plasmon resonance biosensing (2009)Google Scholar
  5. 5.
    Ben Haddada, M., Blanchard, J., Casale, S., Krafft, J.-M., Vallée, A., Méthivier, C., Boujday, S.: Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bull. 46, 335–341 (2013)CrossRefGoogle Scholar
  6. 6.
    Morel, A.-L., Boujday, S., Méthivier, C., Krafft, J.-M., Pradier, C.-M.: Biosensors elaborated on gold nanoparticles, a PM-IRRAS characterisation of the IgG binding efficiency. Talanta 85, 35–42 (2011)CrossRefGoogle Scholar
  7. 7.
    Karakouz, T., Maoz, B.M., Lando, G., Vaskevich, A., Rubinstein, I.: Stabilization of gold nanoparticle films on glass by thermal embedding. ACS Appl. Mater. Interfaces 3, 978–987 (2011)CrossRefGoogle Scholar
  8. 8.
    Seitz, O., Chehimi, M.M., Cabet-Deliry, E., Truong, S., Felidj, N., Perruchot, C., Greaves, S.J., Watts, J.F.: Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates. Coll. Surf. A Physicochem. Eng. Asp. 218, 225–239 (2003)CrossRefGoogle Scholar
  9. 9.
    Nath, N., Chilkoti, A.: A colorimetric gold nanoparticles sensors to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74, 504 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Di.S.Te.B.AUniversità del SalentoLecceItaly
  2. 2.Istituto per la Microelettronica e i Microsistemi CNR IMM - LecceLecceItaly
  3. 3.CNR NANOTEC - Institute of Nanotechnology c/o Campus EcotekneLecceItaly
  4. 4.Dipartimento di Matematica e FisicaUniversità del SalentoLecceItaly

Personalised recommendations