Advertisement

Ultrasensitive Non-enzymatic Electrochemical Glucose Sensor Based on NiO/CNT Composite

  • K. MovlaeeEmail author
  • H. Raza
  • N. Pinna
  • S. G. Leonardi
  • G. Neri
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

Quantification of glucose is critical in healthcare applications. Herein, in order to take advantage of both catalytic activity of NiO for glucose oxidation and high conductivity of CNTs, NiO films with different thicknesses were deposited on the surface of stacked-cup carbon nano tube (SCCNT) using atomic layer deposition (ALD) technique. Using the NiO/SCCNT composites, we demonstrated the fabrication of an electrochemical sensor with high sensitivity of 1252.3 μA cm−2 mM−1 and an ultrafast response (<2 s) for glucose determination in alkaline solution (0.1 M KOH). Additionally, exploiting ALD technique provided us with an opportunity to deposit NiO on the SCCNT surface with different thicknesses, which in turn, enabled us to evaluate thoroughly the effect of different thicknesses of NiO on glucose measurement.

Keywords

Glucose Nickel oxide Electrochemical sensor 

References

  1. 1.
    Galant, A.L., Kaufman, R.C., Wilson, J.D.: Glucose: detection and analysis. Food Chem. 188, 149–160 (2015)CrossRefGoogle Scholar
  2. 2.
    Ocvirk, G., Buck, H., DuVall, S.H.: Electrochemical glucose biosensors for diabetes care. Bioanal. Rev. 6 (2017)Google Scholar
  3. 3.
    Dhara, K., Mahapatra, D.R.: Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim. Acta 185 (2018)Google Scholar
  4. 4.
    Zeng, G., Li, W., Ci, S., Jia, J., Wen, Z.: Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Sci. Rep. 6 (2016)Google Scholar
  5. 5.
    Jung, D.-U.-J., Ahmad, R., Hahn, Y.-B.: Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J. Colloid Interface Sci. 512, 21–28 (2018)CrossRefGoogle Scholar
  6. 6.
    Nie, H., Yao, Z., Zhou, X., Yang, Z., Huang, S.: Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens. Bioelectron. 30, 28–34 (2011)CrossRefGoogle Scholar
  7. 7.
    Yang, H., Gao, G., Teng, F., Liu, W., Chen, S., Ge, Z.: Nickel hydroxide nanoflowers for a nonenzymatic electrochemical glucose sensor. J. Electrochem. Soc. 161, B216–B219 (2014)CrossRefGoogle Scholar
  8. 8.
    Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z.: Hierarchical macro-mesoporous Ni(OH)2 for nonenzymatic electrochemical sensing of glucose. J. Electrochem. Soc. 161, B201–B206 (2014)CrossRefGoogle Scholar
  9. 9.
    Ghanbari, K., Babaei, Z.: Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal. Biochem. 498, 37–46 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Movlaee
    • 1
    • 2
    Email author
  • H. Raza
    • 3
  • N. Pinna
    • 3
  • S. G. Leonardi
    • 2
  • G. Neri
    • 2
  1. 1.School of ChemistryCenter of Excellence in Electrochemistry, University of TehranTehranIran
  2. 2.Department of EngineeringUniversity of MessinaMessinaItaly
  3. 3.Department of ChemistryHumboldt-Universitat zu BerlinBerlinGermany

Personalised recommendations