Advertisement

Diamond-Based Multi Electrode Arrays for Monitoring Neurotransmitter Release

  • Giulia TomagraEmail author
  • Alfio Battiato
  • Ettore Bernardi
  • Alberto Pasquarelli
  • Emilio Carbone
  • Paolo Olivero
  • Valentina Carabelli
  • Federico Picollo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

In the present work, we report on the fabrication of a diamond-based device targeted to the detection of quantal neurotransmitter release. We have developed Multi-electrode Arrays with 16 independent graphitic channels fabricated by means of Deep Ion Beam Lithography (DIBL). These devices are capable of detecting the in vitro exocytotic event from neurosecretory cells, while overcoming several critical limitations of standard amperometric techniques.

Keywords

Diamond-based sensor Electrochemical detection Neuronal network Ion beam lithography 

Notes

Acknowledgements

We thank G. Bruno for help in EIS measurement.

References

  1. 1.
    S\(\ddot{u}\)dhof, T.C., Rizo, J., Su, T.C., S\(\ddot{u}\)dhof, T.C., Rizo, J.: Synaptic vesicle exocytosis, cold Spring Harb. Perspect. Biol. 3(12), 114 (2011)Google Scholar
  2. 2.
    Mellander, L.J., Trouillon, R., Svensson, M.I., Ewing, A.G.: Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion. Sci. Rep. 2 (2012)Google Scholar
  3. 3.
    Simonsson, L., Kurczy, M.E., Trouillon, R.L., Hook, F., Cans, A.S.: A functioning artificial secretory cell. Sci. Rep. 2 (2012)Google Scholar
  4. 4.
    Carabelli, V., et al.: Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem. Neurosci. 8(2), 252264 (2017)CrossRefGoogle Scholar
  5. 5.
    Granado, T.C., et al.: Progress in transparent diamond microelectrode arrays. Phys. Status Solidi 212(11), 2445–2453 (2015)CrossRefGoogle Scholar
  6. 6.
    Nemanich, R.J., Carlisle, J.A., Hirata, A., Haenen, K.: CVD diamondResearch, applications, and challenges. MRS Bull. 39(06), 490–494 (2014)CrossRefGoogle Scholar
  7. 7.
    Ariano, P., et al.: Cellular adhesion and neuronal excitability on functionalised diamond surfaces. Diam. Relat. Mater. 14(37), 669–674 (2005)CrossRefGoogle Scholar
  8. 8.
    Ariano, P., Lo Giudice, A., Marcantoni, A., Vittone, E., Carbone, E., Lovisolo, D.: A diamond-based biosensor for the recording of neuronal activity. Biosens. Bioelectron. 24(7), 2046–2050 (2009)CrossRefGoogle Scholar
  9. 9.
    Olivero, P., et al.: Direct fabrication of three-dimensional buried conductive channels in single crystal diamond with ion microbeam induced graphitization. Diam. Relat. Mater. 18(58), 870–876 (2009)CrossRefGoogle Scholar
  10. 10.
    Picollo, F., et al.: Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation. Diam. Relat. Mater. 19(56), 466469 (2010)Google Scholar
  11. 11.
    Picollo, F., et al.: Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond. New J. Phys. 14 (2012)CrossRefGoogle Scholar
  12. 12.
    Prawer, S., Kalish, R.: Ion-beam-induced transformation of diamond. Phys. Rev. B 51(22), 1571115722 (1995)CrossRefGoogle Scholar
  13. 13.
    Bosia, F., et al.: Finite element analysis of ion-implanted diamond surface swelling. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(19), 2991–2995 (2010)CrossRefGoogle Scholar
  14. 14.
    Bosia, F., et al.: Modification of the structure of diamond with MeV ion implantation. Diam. Relat. Mater. 20(56), 774778 (2011)Google Scholar
  15. 15.
    Bosia, F., et al.: Direct measurement and modelling of internal strains in ion-implanted diamond. J. Phys. Condens. Matter 25(38), 385–403 (2013)Google Scholar
  16. 16.
    Lagomarsino, S., et al.: Evidence of light guiding in ion-implanted diamond. Phys. Rev. Lett. 105(23), 233903 (2010)CrossRefGoogle Scholar
  17. 17.
    Castelletto, S., et al.: Diamond-based structures to collect and guide light. New. J. Phys. 13(2), 025020 (2011)CrossRefGoogle Scholar
  18. 18.
    Mohr, M., et al.: Characterization of the recovery of mechanical properties of ion-implanted diamond after thermal annealing. Diam. Relat. Mater. 63, 7579 (2016)CrossRefGoogle Scholar
  19. 19.
    Fu, J., et al.: Single crystal diamond cantilever for micro-electromechanical systems. Diam. Relat. Mater. 73, 267272 (2017)CrossRefGoogle Scholar
  20. 20.
    Drumm, V.S., et al.: Surface damage on diamond membranes fabricated by ion implantation and lift-off. Appl. Phys. Lett. 98(23), 231904 (2011)CrossRefGoogle Scholar
  21. 21.
    Lee, J.C., Magyar, A.P., Bracher, D.O., Aharonovich, I., Hu, E.L.: Fabrication of thin diamond membranes for photonic applications. Diam. Relat. Mater. 33, 4548 (2013)CrossRefGoogle Scholar
  22. 22.
    Forneris, J., et al.: A 3-dimensional interdigitated electrode geometry for the enhancement of charge collection efficiency in diamond detectors. EPL (Europhysics Letter) 108(1), 18001 (2014)CrossRefGoogle Scholar
  23. 23.
    Forneris, J., et al.: IBIC characterization of an ion-beam-micromachined multi-electrode diamond detector. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 306, 181–185 (2013)CrossRefGoogle Scholar
  24. 24.
    Olivero, P., et al.: Focused ion beam fabrication and IBIC characterization of a diamond detector with buried electrodes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269(20), 2340–2344 (2011)CrossRefGoogle Scholar
  25. 25.
    Lo Giudice, A., et al.: Lateral IBIC characterization of single crystal synthetic diamond detectors. Phys. Status Solidi—Rapid Res. Lett. 5(2), 80–82 (2011)CrossRefGoogle Scholar
  26. 26.
    Picollo, F., et al.: Fabrication of monolithic microfluidic channels in diamond with ion beam lithography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 404, 193–197 (2017)CrossRefGoogle Scholar
  27. 27.
    Strack, M.A., et al.: Buried picolitre fluidic channels in single-crystal diamond. Proceedings of SPIE 8923, 89232X (2013)Google Scholar
  28. 28.
    Hickey, D.P., Jones, K.S., Elliman, R.G.: Amorphization and graphitization of single-crystal diamond—a transmission electron microscopy study. Diam. Relat. Mater. 18(11), 13531359 (2009)CrossRefGoogle Scholar
  29. 29.
    Battiato, A., et al.: Softening the ultra-stiff: controlled variation of Youngs modulus in single-crystal diamond by ion implantation. Acta Mater. 116, 95103 (2016)CrossRefGoogle Scholar
  30. 30.
    Uzan-Saguy, C., Cytermann, C., Brener, R., Richter, V., Shaanan, M., Kalish, R.: Damage threshold for ion-beam induced graphitization of diamond. Appl. Phys. Lett. 67, 1194 (1995)CrossRefGoogle Scholar
  31. 31.
    Rigato, V.: Interdisciplinary Physics with Small Accelerators at LNL: Status and Perspectives, pp. 29–34 (2013)Google Scholar
  32. 32.
    Re, A., et al.: Ion Beam Analysis for the provenance attribution of lapis lazuli used in glyptic art: the case of the Collezione Medicea. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 348, 278–284 (2015)CrossRefGoogle Scholar
  33. 33.
    Olivero, P., et al.: Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation. Eur. Phys. J. B 75(2), 127132 (2010)CrossRefGoogle Scholar
  34. 34.
    Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 268(1112), 1818–1823 (2010)Google Scholar
  35. 35.
    Picollo, F., et al.: All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci. Rep. 6 (2016)Google Scholar
  36. 36.
    Picollo, F., et al.: Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 348, 199–202 (2015)CrossRefGoogle Scholar
  37. 37.
    Bernardi, E., Battiato, A., Olivero, P., Picollo, F., Vittone, E.: Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond. J. Appl. Phys. 117(2) (2015)CrossRefGoogle Scholar
  38. 38.
    Colombo, E., et al.: Fabrication of a NCD microelectrode array for amperometric detection with micrometer spatial resolution. Diam. Relat. Mater. 20(56), 793797 (2011)Google Scholar
  39. 39.
    Picollo, F., et al.: Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. Sensors 15(1), 515528 (2015)Google Scholar
  40. 40.
    Ditalia Tchernij, S., et al.: Electrical characterization of a graphite-diamond-graphite junction fabricated by MeV carbon implantation. Diam. Relat. Mater. 74, 125–131 (2017)CrossRefGoogle Scholar
  41. 41.
    Gosso, S., et al.: Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J. Physiol. 592(15), 32153230 (2014)CrossRefGoogle Scholar
  42. 42.
    Picollo, F., et al.: Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal. Chem. 88(15), 7493–7499 (2016)CrossRefGoogle Scholar
  43. 43.
    Picollo, F., et al.: A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Adv. Mater. 25(34), 46964700 (2013)CrossRefGoogle Scholar
  44. 44.
    Carabelli, V., et al.: Nanocrystalline diamond microelectrode arrays fabricated on sapphire techology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens. Bioelectron. 26(1), 9298 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giulia Tomagra
    • 1
    Email author
  • Alfio Battiato
    • 2
  • Ettore Bernardi
    • 3
  • Alberto Pasquarelli
    • 4
  • Emilio Carbone
    • 5
  • Paolo Olivero
    • 2
    • 6
  • Valentina Carabelli
    • 5
  • Federico Picollo
    • 2
    • 6
  1. 1.Drug Science and Technology DepartmentUniversity of TorinoTorinoItaly
  2. 2.Section of TorinoIstituto Nazionale di Fisica Nucleare (INFN)TorinoItaly
  3. 3.Physics DepartmentUniversity of TorinoTorinoItaly
  4. 4.Institute of Electron Devices and CircuitsUlm UniversityUlmGermany
  5. 5.Drug Science and Technology Department, Inter-departmental Center (NIS)University of TorinoTorinoItaly
  6. 6.Physics Department, Inter-departmental Center(NIS)University of TorinoTorinoItaly

Personalised recommendations