Nickel Based Biosensor for Biomolecules Recognition

  • Salvatore PetraliaEmail author
  • Emanuele Luigi Sciuto
  • Salvo Mirabella
  • Francesco Priolo
  • Francesco Rundo
  • Sabrina Conoci
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)


A novel electrochemical device based on Nickel oxide sensing species is described. The miniaturized device contains three integrated metal microelectrodes with the working active electrode made of Ni zero-valence. It has been proved to be sensitive and versatile in the detection of glucose on saliva. The findings here reported pay the way to future development of versatile portable sensors addressing easy-to-use and low-cost system.


Glucose sensing Electrochemical measurement Silicon device 


  1. 1.
    Petralia, S., Sciuto, E.L., Santangelo, M.F., Libertino, S., Messina, M.A., Conoci, S.: Sulfide species optical monitoring by a miniaturized silicon photomultiplier. Sensors (18), 727 (2018)CrossRefGoogle Scholar
  2. 2.
    Petralia, S., Sciuto, E.L., Di Pietro, M.L., Zimbone, M., Grimaldi, M.G., Conoci, S.: Innovative chemical strategy for PCR-free genetic detection of pathogens by an integrated electrochemical biosensor. Analyst 42, 2090–2093 (2017)CrossRefGoogle Scholar
  3. 3.
    Petralia, S., Conoci, S.: PCR technologies for point of care testing: progress and perspectives. ACS Sens. 2, 876–891 (2017)CrossRefGoogle Scholar
  4. 4.
    Petralia, S., Castagna, M.E., Cappello, E., Puntoriero, F., Trovato, E., Gagliano, A., Conoci, S.: A miniaturized silicon based device for nucleic acids electrochemical detection, 2015. Sens. Bio.-Sens. Res. 6, 90–94 (2015)CrossRefGoogle Scholar
  5. 5.
    Zeng, Y., Zhu, Z., Du, D., Lin, Y., J.: Electroanal. Chem. (781) 14–154 (2016)Google Scholar
  6. 6.
    Petralia, S., Sciuto, E.L., Messina, M.A., Scandurra, A., Mirabella, S., Priolo, F., Conoci, S.: Miniaturized and multi-purpose electrochemical sensing device based on thin Ni oxides. Sens. Actuators B Chem. 263, 10–19 (2018)CrossRefGoogle Scholar
  7. 7.
    Messina, M.A., Melim, C., Conoci, S., Petralia, S.: A facile method for urinary phenylalanine measurement on paper-based lab-on-chip for PKU therapy monitoring. Analyst (142) 2090 (2017)Google Scholar
  8. 8.
    Donlon, J., Sarkissian, C., Levy, H.L., Scriver, C.R.: Hyperphenylalaninemia: Phenylalanine Hydroxylase Deficiency. Scriver’s Online Metabolic and Molecular Bases of Inherited Disease (2015).
  9. 9.
    Kun, T., Prestgard, M.: A review of recent advances in nonenzymatic glucosesensors. Mater. Sci. Eng. C (41) 100–118 (2014)Google Scholar
  10. 10.
    Iwu, K.O., Lombardo, A., Sanz, R., Scirè, S., Mirabella, S.: Facile synthesis of Ninanofoam for flexible and lowcost nonenzymatic glucose sensing. Sens. Actuators B 224, 764–771 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhang, W., Du, Y., Wang, M.L.: Non Invasive Glucose Monitoring using Saliva nano-biosensor. Sens. Biosens. Res. 4, 23–29 (2015)Google Scholar
  12. 12.
    Luo, L., Li, F., Zhu, L., Ding, Y., Zhang, Z., Deng, D., Lu, B.: Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloids Surf. B 102, 307–311 (2013)CrossRefGoogle Scholar
  13. 13.
    Fleischmann, M., Korinek, K., Pletcher, D.: The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem., 31–39 (1971)Google Scholar
  14. 14.
    Petralia, S., Mirabella, S., Strano, V., Conoci, S.: A miniaturized electrochemicalsystem based on nickel oxide species for glucose sensing applications. Bionanoscience 7, 58–63 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.STMicroelectronicsCataniaItaly
  2. 2.Department of Physics and Astronomy, CNR-IMM-MATISUniversity of CataniaCataniaItaly

Personalised recommendations