An Innovative Optical Chem-Sensor Based on a Silicon Photomultipliers for the Sulfide Monitoring

  • Salvatore PetraliaEmail author
  • Emanuele Luigi Sciuto
  • Maria Anna Messina
  • M. Francesca Santangelo
  • Sebania Libertino
  • Sabrina Conoci
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)


The monitoring of pollutants such as sulfide anion species S2− and HS is receiving a growing interest since they can cause acute and chronic toxicity including neurological effects and at high concentrations, even death. This study describes a new approach for optical detection of sulfide species in water samples. The method uses a silicon microchip with reagent-on-board and an integrated silicon photomultiplier (SiPM) device. The sulfide species are detected by the fluorescence signal emitted upon the reaction with N,N-dimethyl-phenylenediamine sulfate in the presence of iron(3+), leading to the formation of the fluorescent methylene blue (MB) species. A comparison with conventional fluorimetric detection method has been also carried out. Data show a very good linear correlation, proving the effectiveness of the method.


Chemical sensor Fluorimetry Silicon photomultiplier 


  1. 1.
    Petralia, S., Castagna, M.E., Cappello, E., Puntoriero, F., Trovato, E., Gagliano, A., Conoci, S.: A miniaturized silicon based device for nucleic acids electrochemical detection. Sens. Biosens. Res. 6, 90–94 (2015)Google Scholar
  2. 2.
    McDonagh, C., Burke, C.S., MacCraith, B.D.: Optical chemical sensors. Chem. Rev. 108, 400–422 (2008)CrossRefGoogle Scholar
  3. 3.
    Libertino, S., Conoci, S., Scandurra, A., Spinella, C.: Sens. Actuators B Chem. (179), 240–251 (2013)Google Scholar
  4. 4.
    Banna, M.H., Imran, S., Francisque, A., Najjaran, H., Sadiq, R., Rodriguez, M., Hoorfar, M.: Crit. Rev. Env. Sci. Technol. 44, 1370–1421 (2014)CrossRefGoogle Scholar
  5. 5.
    Pandey, S.K., Kim, K., Tang, K.: A review of sensor-based methods for monitoring hydrogen sulfide. Trends Anal. Chem. 32 (2012)CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay, S.C., Mason, A. (eds.): Smart Sensors for Real-Time Water Quality Monitoring. Springer, Berlin, Germany (2013). ISBN 978-3-642-37006-9Google Scholar
  7. 7.
    Nikolaev, I.N., Litvinov, A.V.: Procedure for measuring low concentrations of H2 and H2S above a water surface. Meas. Techn. 47(5) (2004)Google Scholar
  8. 8.
    Doujaiji, B., Al-Tawfiq, J.A.: Ann. Saudi. Med. (30), 76–80 (2010)Google Scholar
  9. 9.
    Santangelo, M.F., Sciuto, E.L., Lombardo, S., Busacca, A.C., Petralia, S., Conoci, S., Libertino, S.: Siphotomultipliers for bio-sensing applications. J. Sel. Top. Quantum Electron. 22, 335–341 (2016)CrossRefGoogle Scholar
  10. 10.
    Petralia, S., Sciuto, E.L., Santangelo, M.F., Libertino, S., Messina, M.A., Conoci, S.: Sulfide species optical monitoring by a miniaturized silicon photomultiplier. Sensors (18), 727 (2018)CrossRefGoogle Scholar
  11. 11.
    Kuban, V., Dasgupta, P.K., Marx, J.N.: Anal. Chem. 64, 36–43 (1992)CrossRefGoogle Scholar
  12. 12.
    Spanziani, M.A., Davis, J.L., Tinani, M., Carroll, M.K.: Analyst (122), 1555–1557 (1997)Google Scholar
  13. 13.
    Lawrence, N.S., Davis, J., Jiang, L., Jones, T.G.J., Davies, S.N., Compton, R.G.: Electroanalysis (12), 1453–1460 (2000)Google Scholar
  14. 14.
    Lawrence, N.S., Davis, J., Marken, F., Jiang, L., Jones, T.G.J., Davies, S.N., Compton, R.G.: Sens. Actuators B Chem. (69), 189–192 (2000)Google Scholar
  15. 15.
    Tang, D., Santschi, P.H.J.: Chromatogr. A. 883, 305–309 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.STMicroelectronicsCataniaItaly
  2. 2.Department of Physics and AstronomyUniversity of CataniaCataniaItaly
  3. 3.Azienda Ospedaliero Universitaria Policlinico Vittorio EmanueleCataniaItaly
  4. 4.Centro Speleologico EtneoCataniaItaly
  5. 5.CNR-IMM SedeCataniaItaly

Personalised recommendations