Numerical Fourier Analysis pp 449-521 | Cite as
Numerical Applications of DFT
Abstract
This chapter addresses numerical applications of DFTs. In Sect. 9.1, we describe a powerful multidimensional approximation method, the so-called cardinal interpolation by translates φ(⋅ −k) with \(\mathbf k \in {\mathbb Z}^d\), where \(\varphi \in C_c(\mathbb R^d)\) is a compactly supported, continuous function. In this approximation method, the cardinal Lagrange function is of main interest. Applying this technique, we compute the multidimensional Fourier transform by the method of attenuation factors. Then, in Sect. 9.2, we investigate the periodic interpolation by translates on a uniform mesh, where we use the close connection between periodic and cardinal interpolation by translates. The central notion is the periodic Lagrange function. Using the periodic Lagrange function, we calculate the Fourier coefficients of a multivariate periodic function by the method of attenuation factors.
References
- 1.B. Adcock, Convergence acceleration of modified Fourier series in one or more dimensions. Math. Comput. 80(273), 225–261 (2011)MathSciNetzbMATHGoogle Scholar
- 4.B.K. Alpert, V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12(1), 158–179 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.A. Averbuch, M. Israeli, L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933–952 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.E. Bannai, E. Bannai, A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.G. Baszenski, F.-J. Delvos, M. Tasche, A united approach to accelerating trigonometric expansions. Concrete analysis. Comput. Math. Appl. 30(3–6), 33–49 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.D. Batenkov, Y. Yomdin, Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comput. 81(277), 277–318 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.M. Böhme, D. Potts, A fast algorithm for filtering and wavelet decomposition on the sphere. Electron. Trans. Numer. Anal. 16, 70–92 (2003)MathSciNetzbMATHGoogle Scholar
- 38.M. Böhme, D. Potts, A fast algorithm for spherical filtering on arbitrary grids, in Proceedings of SPIE. Wavelets: Applications in Signal and Image Processing X, vol. 5207 (2003)Google Scholar
- 39.A. Bondarenko, D. Radchenko, M. Viazovska, Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.A. Böttcher, S. Kunis, D. Potts, Probabilistic spherical Marcinkiewicz-Zygmund inequalities. J. Approx. Theory 157(2), 113–126 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover Press, New York, 2000)Google Scholar
- 57.H.J. Bunge, Texture Analysis in Material Science (Butterworths, London, 1982)Google Scholar
- 62.J.E. Castrillon-Candas, V. Siddavanahalli, C. Bajaj, Nonequispaced Fourier transforms for protein-protein docking. ICES Report 05-44. University of Texas (2005)Google Scholar
- 64.X. Chen, A. Frommer, B. Lang, Computational existence proofs for spherical t-designs. Numer. Math. 117(2), 289–305 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 68.C.K. Chui, Multivariate Splines (SIAM, Philadelphia, 1988)zbMATHCrossRefGoogle Scholar
- 75.H.B. Curry, I.J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits. J. Analyse Math. 17, 71–107 (1966)zbMATHGoogle Scholar
- 79.C. de Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001)Google Scholar
- 80.C. de Boor, R. DeVore, Approximation by smooth multivariate splines. Trans. Am. Math. Soc. 276(2), 775–788 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 81.C. de Boor, K. Höllig, S. Riemenschneider, Box Splines (Springer, New York, 1993)zbMATHCrossRefGoogle Scholar
- 88.J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 97.A. Eagle, On the relations between the Fourier constants of a periodic function and the coefficients determined by harmonic analysis. Philos. Mag. VII. Ser. 5, 113–132 (1928)zbMATHCrossRefGoogle Scholar
- 98.K.S. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671–690 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 100.H. Ehlich, Untersuchungen zur numerischen Fourieranalyse. Math. Z. 91, 380–420 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
- 105.G.E. Fasshauer, L.L. Schumaker, Scattered data fitting on the sphere, in Mathematical Methods for Curves and Surfaces II (Vanderbilt University Press, Nashville, 1998), pp. 117–166zbMATHGoogle Scholar
- 116.D. Fortunato, A. Townsend, Fast Poisson solvers for spectral methods (2017). ArXiv e-printsGoogle Scholar
- 121.W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere (Clarendon Press/Oxford University Press, New York, 1998)zbMATHGoogle Scholar
- 126.W. Gautschi, Attenuation factors in practical Fourier analysis. Numer. Math. 18, 373–400 (1971–1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 133.M. Golomb, Approximation by periodic spline interpolants on uniform meshes. J. Approx. Theory 1, 26–65 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
- 139.M. Gräf, An unified approach to scattered data approximation on \(\mathbb S^3\) and SO(3). Adv. Comput. Math. 37(3), 379–392 (2012)Google Scholar
- 140.M. Gräf, Efficient algorithms for the computation of optimal quadrature points on Riemannian manifolds. Dissertation, Universitätsverlag Chemnitz, 2013Google Scholar
- 141.M. Gräf, Numerical spherical designs on \({\mathbb S}^2\). http://www.tu-chemnitz.de/~potts/workgroup/graef/quadrature/index.php.en
- 142.M. Gräf, R. Hielscher, Fast global optimization on the torus, the sphere and the rotation group. SIAM J. Optim. 25(1), 540–563 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 143.M. Gräf, D. Potts, On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119(4), 699–724 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 144.M. Gräf, S. Kunis, D. Potts, On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27(1), 124–132 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 145.M. Gräf, D. Potts, G. Steidl, Quadrature errors, discrepancies and their relations to halftoning on the torus and the sphere. SIAM J. Sci. Comput. 34(5), A2760–A2791 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 153.M.H. Gutknecht, Attenuation factors in multivariate Fourier analysis. Numer. Math. 51(6), 615–629 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 155.N. Hale, A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36(1), A148–A167 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 161.D.M. Healy, P.J. Kostelec, S. Moore, D.N. Rockmore, FFTs for the 2-sphere - improvements and variations. J. Fourier Anal. Appl. 9(4), 341–385 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 171.D. Huybrechs, On the Fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 173.A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 178.R. Jakob-Chien, B.K. Alpert, A fast spherical filter with uniform resolution. J. Comput. Phys. 136, 580–584 (1997)zbMATHCrossRefGoogle Scholar
- 194.J. Keiner, Computing with expansions in Gegenbauer polynomials. SIAM J. Sci. Comput. 31(3), 2151–2171 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 195.J. Keiner, D. Potts, Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77(261), 397–419 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 196.J. Keiner, S. Kunis, D. Potts, Fast summation of radial functions on the sphere. Computing 78(1), 1–15 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 197.J. Keiner, S. Kunis, D. Potts, Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13(4), 435–458 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 199.J. Keiner, S. Kunis, D. Potts, NFFT 3.4, C subroutine library. http://www.tu-chemnitz.de/~potts/nfft. Contributor: F. Bartel, M. Fenn, T. Görner, M. Kircheis, T. Knopp, M. Quellmalz, T. Volkmer, A. Vollrath
- 207.P.J. Kostelec, D.N. Rockmore, FFTs on the rotation group. J. Fourier Anal. Appl. 14(2), 145–179 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 212.S. Kunis, D. Potts, Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161(1), 75–98 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 219.C. Lanczos, Discourse on Fourier Series, reprint of the 1966 edn. (SIAM, Philadelphia, 2016)zbMATHCrossRefGoogle Scholar
- 226.N. Li, 2DECOMP&FFT - Parallel FFT subroutine library. http://www.2decomp.org
- 230.F. Locher, Interpolation on uniform meshes by the translates of one function and related attenuation factors. Math. Comput. 37(156), 403–416 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
- 232.D. Mainprice, F. Bachmann, R. Hielscher, H. Schaeben, Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geol. Soc. Lond. 409(1), 251–271 (2014)CrossRefGoogle Scholar
- 240.H.N. Mhaskar, F.J. Narcowich, J.D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70(235), 1113–1130 (2001). Corrigendum to this paper in Math. Comput. 71(237), 453–454 (2002)Google Scholar
- 241.V. Michel, Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball (Birkhäuser/Springer, New York, 2013)zbMATHCrossRefGoogle Scholar
- 242.M.J. Mohlenkamp, A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5(2–3), 159–184 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 249.F.J. Narcowich, X. Sun, J.D. Ward, H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7(3), 369–390 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 292.D. Potts, G. Steidl, M. Tasche, Fast and stable algorithms for discrete spherical Fourier transforms. Linear Algebra Appl. 275–276, 433–450 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 293.D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms. Math. Comput. 67(224), 1577–1590 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 297.D. Potts, J. Prestin, A. Vollrath, A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numer. Algorithms 52(3), 355–384 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 301.W. Quade, L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. (Verlag der Akademie der Wissenschaften, 1938), pp. 383–429Google Scholar
- 311.V. Rokhlin, M. Tygert, Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput. 27(6), 1903–1928 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 320.H. Schaeben, K.G. van den Boogaart, Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)CrossRefGoogle Scholar
- 335.I.H. Sloan, R.S. Womersley, Constructive polynomial approximation on the sphere. J. Approx. Theory 103(1), 91–118 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 336.I.H. Sloan, R.S. Womersley, A variational characterisation of spherical designs. J. Approx. Theory 159(2), 308–318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 345.R. Suda, M. Takami, A fast spherical harmonics transform algorithm. Math. Comput. 71(238), 703–715 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 346.P.N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19(3), 490–501 (1977)MathSciNetzbMATHGoogle Scholar
- 349.M. Tasche, Accelerating convergence of univariate and bivariate Fourier approximations. Z. Anal. Anwendungen 10(2), 239–250 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 358.M. Tygert, Fast algorithms for spherical harmonic expansions II. J. Comput. Phys. 227(8), 4260–4279 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 359.M. Tygert, Fast algorithms for spherical harmonic expansions, III. J. Comput. Phys. 229(18), 6181–6192 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 362.C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992)zbMATHCrossRefGoogle Scholar
- 369.J.A.C. Weideman, L.N. Trefethen, The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 386.N. Yarvin, V. Rokhlin, A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics. J. Comput. Phys. 147, 549–609 (1998)MathSciNetzbMATHCrossRefGoogle Scholar