Numerical Applications of DFT

  • Gerlind Plonka
  • Daniel Potts
  • Gabriele Steidl
  • Manfred Tasche
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter addresses numerical applications of DFTs. In Sect. 9.1, we describe a powerful multidimensional approximation method, the so-called cardinal interpolation by translates φ(⋅ −k) with \(\mathbf k \in {\mathbb Z}^d\), where \(\varphi \in C_c(\mathbb R^d)\) is a compactly supported, continuous function. In this approximation method, the cardinal Lagrange function is of main interest. Applying this technique, we compute the multidimensional Fourier transform by the method of attenuation factors. Then, in Sect. 9.2, we investigate the periodic interpolation by translates on a uniform mesh, where we use the close connection between periodic and cardinal interpolation by translates. The central notion is the periodic Lagrange function. Using the periodic Lagrange function, we calculate the Fourier coefficients of a multivariate periodic function by the method of attenuation factors.


  1. 1.
    B. Adcock, Convergence acceleration of modified Fourier series in one or more dimensions. Math. Comput. 80(273), 225–261 (2011)MathSciNetzbMATHGoogle Scholar
  2. 4.
    B.K. Alpert, V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12(1), 158–179 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 12.
    A. Averbuch, M. Israeli, L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933–952 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 13.
    E. Bannai, E. Bannai, A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 17.
    G. Baszenski, F.-J. Delvos, M. Tasche, A united approach to accelerating trigonometric expansions. Concrete analysis. Comput. Math. Appl. 30(3–6), 33–49 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 19.
    D. Batenkov, Y. Yomdin, Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comput. 81(277), 277–318 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 37.
    M. Böhme, D. Potts, A fast algorithm for filtering and wavelet decomposition on the sphere. Electron. Trans. Numer. Anal. 16, 70–92 (2003)MathSciNetzbMATHGoogle Scholar
  8. 38.
    M. Böhme, D. Potts, A fast algorithm for spherical filtering on arbitrary grids, in Proceedings of SPIE. Wavelets: Applications in Signal and Image Processing X, vol. 5207 (2003)Google Scholar
  9. 39.
    A. Bondarenko, D. Radchenko, M. Viazovska, Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 41.
    A. Böttcher, S. Kunis, D. Potts, Probabilistic spherical Marcinkiewicz-Zygmund inequalities. J. Approx. Theory 157(2), 113–126 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 43.
    J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover Press, New York, 2000)Google Scholar
  12. 57.
    H.J. Bunge, Texture Analysis in Material Science (Butterworths, London, 1982)Google Scholar
  13. 62.
    J.E. Castrillon-Candas, V. Siddavanahalli, C. Bajaj, Nonequispaced Fourier transforms for protein-protein docking. ICES Report 05-44. University of Texas (2005)Google Scholar
  14. 64.
    X. Chen, A. Frommer, B. Lang, Computational existence proofs for spherical t-designs. Numer. Math. 117(2), 289–305 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 68.
    C.K. Chui, Multivariate Splines (SIAM, Philadelphia, 1988)zbMATHCrossRefGoogle Scholar
  16. 75.
    H.B. Curry, I.J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits. J. Analyse Math. 17, 71–107 (1966)zbMATHGoogle Scholar
  17. 79.
    C. de Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001)Google Scholar
  18. 80.
    C. de Boor, R. DeVore, Approximation by smooth multivariate splines. Trans. Am. Math. Soc. 276(2), 775–788 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 81.
    C. de Boor, K. Höllig, S. Riemenschneider, Box Splines (Springer, New York, 1993)zbMATHCrossRefGoogle Scholar
  20. 88.
    J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 97.
    A. Eagle, On the relations between the Fourier constants of a periodic function and the coefficients determined by harmonic analysis. Philos. Mag. VII. Ser. 5, 113–132 (1928)zbMATHCrossRefGoogle Scholar
  22. 98.
    K.S. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671–690 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 100.
    H. Ehlich, Untersuchungen zur numerischen Fourieranalyse. Math. Z. 91, 380–420 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 105.
    G.E. Fasshauer, L.L. Schumaker, Scattered data fitting on the sphere, in Mathematical Methods for Curves and Surfaces II (Vanderbilt University Press, Nashville, 1998), pp. 117–166zbMATHGoogle Scholar
  25. 116.
    D. Fortunato, A. Townsend, Fast Poisson solvers for spectral methods (2017). ArXiv e-printsGoogle Scholar
  26. 121.
    W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere (Clarendon Press/Oxford University Press, New York, 1998)zbMATHGoogle Scholar
  27. 126.
    W. Gautschi, Attenuation factors in practical Fourier analysis. Numer. Math. 18, 373–400 (1971–1972)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 133.
    M. Golomb, Approximation by periodic spline interpolants on uniform meshes. J. Approx. Theory 1, 26–65 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 139.
    M. Gräf, An unified approach to scattered data approximation on \(\mathbb S^3\) and SO(3). Adv. Comput. Math. 37(3), 379–392 (2012)Google Scholar
  30. 140.
    M. Gräf, Efficient algorithms for the computation of optimal quadrature points on Riemannian manifolds. Dissertation, Universitätsverlag Chemnitz, 2013Google Scholar
  31. 141.
    M. Gräf, Numerical spherical designs on \({\mathbb S}^2\).
  32. 142.
    M. Gräf, R. Hielscher, Fast global optimization on the torus, the sphere and the rotation group. SIAM J. Optim. 25(1), 540–563 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 143.
    M. Gräf, D. Potts, On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119(4), 699–724 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 144.
    M. Gräf, S. Kunis, D. Potts, On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27(1), 124–132 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 145.
    M. Gräf, D. Potts, G. Steidl, Quadrature errors, discrepancies and their relations to halftoning on the torus and the sphere. SIAM J. Sci. Comput. 34(5), A2760–A2791 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 153.
    M.H. Gutknecht, Attenuation factors in multivariate Fourier analysis. Numer. Math. 51(6), 615–629 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 155.
    N. Hale, A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36(1), A148–A167 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 161.
    D.M. Healy, P.J. Kostelec, S. Moore, D.N. Rockmore, FFTs for the 2-sphere - improvements and variations. J. Fourier Anal. Appl. 9(4), 341–385 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 171.
    D. Huybrechs, On the Fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 173.
    A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 178.
    R. Jakob-Chien, B.K. Alpert, A fast spherical filter with uniform resolution. J. Comput. Phys. 136, 580–584 (1997)zbMATHCrossRefGoogle Scholar
  42. 194.
    J. Keiner, Computing with expansions in Gegenbauer polynomials. SIAM J. Sci. Comput. 31(3), 2151–2171 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 195.
    J. Keiner, D. Potts, Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77(261), 397–419 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 196.
    J. Keiner, S. Kunis, D. Potts, Fast summation of radial functions on the sphere. Computing 78(1), 1–15 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 197.
    J. Keiner, S. Kunis, D. Potts, Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13(4), 435–458 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 199.
    J. Keiner, S. Kunis, D. Potts, NFFT 3.4, C subroutine library. Contributor: F. Bartel, M. Fenn, T. Görner, M. Kircheis, T. Knopp, M. Quellmalz, T. Volkmer, A. Vollrath
  47. 207.
    P.J. Kostelec, D.N. Rockmore, FFTs on the rotation group. J. Fourier Anal. Appl. 14(2), 145–179 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 212.
    S. Kunis, D. Potts, Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161(1), 75–98 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 219.
    C. Lanczos, Discourse on Fourier Series, reprint of the 1966 edn. (SIAM, Philadelphia, 2016)zbMATHCrossRefGoogle Scholar
  50. 226.
    N. Li, 2DECOMP&FFT - Parallel FFT subroutine library.
  51. 230.
    F. Locher, Interpolation on uniform meshes by the translates of one function and related attenuation factors. Math. Comput. 37(156), 403–416 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 232.
    D. Mainprice, F. Bachmann, R. Hielscher, H. Schaeben, Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geol. Soc. Lond. 409(1), 251–271 (2014)CrossRefGoogle Scholar
  53. 240.
    H.N. Mhaskar, F.J. Narcowich, J.D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70(235), 1113–1130 (2001). Corrigendum to this paper in Math. Comput. 71(237), 453–454 (2002)Google Scholar
  54. 241.
    V. Michel, Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball (Birkhäuser/Springer, New York, 2013)zbMATHCrossRefGoogle Scholar
  55. 242.
    M.J. Mohlenkamp, A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5(2–3), 159–184 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 249.
    F.J. Narcowich, X. Sun, J.D. Ward, H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7(3), 369–390 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 292.
    D. Potts, G. Steidl, M. Tasche, Fast and stable algorithms for discrete spherical Fourier transforms. Linear Algebra Appl. 275–276, 433–450 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 293.
    D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms. Math. Comput. 67(224), 1577–1590 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 297.
    D. Potts, J. Prestin, A. Vollrath, A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numer. Algorithms 52(3), 355–384 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 301.
    W. Quade, L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. (Verlag der Akademie der Wissenschaften, 1938), pp. 383–429Google Scholar
  61. 311.
    V. Rokhlin, M. Tygert, Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput. 27(6), 1903–1928 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 320.
    H. Schaeben, K.G. van den Boogaart, Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)CrossRefGoogle Scholar
  63. 335.
    I.H. Sloan, R.S. Womersley, Constructive polynomial approximation on the sphere. J. Approx. Theory 103(1), 91–118 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 336.
    I.H. Sloan, R.S. Womersley, A variational characterisation of spherical designs. J. Approx. Theory 159(2), 308–318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 345.
    R. Suda, M. Takami, A fast spherical harmonics transform algorithm. Math. Comput. 71(238), 703–715 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 346.
    P.N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19(3), 490–501 (1977)MathSciNetzbMATHGoogle Scholar
  67. 349.
    M. Tasche, Accelerating convergence of univariate and bivariate Fourier approximations. Z. Anal. Anwendungen 10(2), 239–250 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 358.
    M. Tygert, Fast algorithms for spherical harmonic expansions II. J. Comput. Phys. 227(8), 4260–4279 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 359.
    M. Tygert, Fast algorithms for spherical harmonic expansions, III. J. Comput. Phys. 229(18), 6181–6192 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 362.
    C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992)zbMATHCrossRefGoogle Scholar
  71. 369.
    J.A.C. Weideman, L.N. Trefethen, The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 386.
    N. Yarvin, V. Rokhlin, A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics. J. Comput. Phys. 147, 549–609 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gerlind Plonka
    • 1
  • Daniel Potts
    • 2
  • Gabriele Steidl
    • 3
  • Manfred Tasche
    • 4
  1. 1.University of GöttingenGöttingenGermany
  2. 2.Chemnitz University of TechnologyChemnitzGermany
  3. 3.TU KaiserslauternKaiserslauternGermany
  4. 4.University of RostockRostockGermany

Personalised recommendations