Advertisement

High-Dimensional FFT

  • Gerlind Plonka
  • Daniel Potts
  • Gabriele Steidl
  • Manfred Tasche
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this chapter, we discuss methods for the approximation of d-variate functions in high dimension \(d\in \mathbb N\) based on sampling along rank-1 lattices and we derive the corresponding fast algorithms. In contrast to Chap.  4, our approach to compute the Fourier coefficients of d-variate functions is no longer based on tensor product methods.

References

  1. 15.
    G. Baszenski, F.-J. Delvos, A discrete Fourier transform scheme for Boolean sums of trigonometric operators, in Multivariate Approximation Theory IV ( Birkhäuser, Basel, 1989), pp. 15–24CrossRefGoogle Scholar
  2. 40.
    L. Bos, M. Caliari, S. De Marchi, M. Vianello, Y. Xu, Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143, 15–25 (2006). Special Issue on Foundations of Computational MathematicsMathSciNetCrossRefGoogle Scholar
  3. 55.
    H.-J. Bungartz, M. Griebel, A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complexity 15(2), 167–199 (1999)MathSciNetCrossRefGoogle Scholar
  4. 56.
    H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefGoogle Scholar
  5. 59.
    G. Byrenheid, L. Kämmerer, T. Ullrich, T. Volkmer, Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136(4), 993–1034 (2017)MathSciNetCrossRefGoogle Scholar
  6. 74.
    R. Cools, D. Nuyens, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903–920 (2004)MathSciNetzbMATHGoogle Scholar
  7. 86.
    J. Dick, F.Y. Kuo, I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRefGoogle Scholar
  8. 94.
    D. Dung, V.N. Temlyakov, T. Ullrich, Hyperbolic Cross Approximation. Advanced Courses in Mathematics. CRM Barcelona (Birkhäuser/Springer, New York, 2017)Google Scholar
  9. 183.
    L. Kämmerer, Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. 51(5), 2773–2796 (2013)MathSciNetCrossRefGoogle Scholar
  10. 184.
    L. Kämmerer, High dimensional fast Fourier transform based on Rank-1 lattice sampling. Dissertation, Universitätsverlag Chemnitz, 2014Google Scholar
  11. 185.
    L. Kämmerer, Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices, in Approximation Theory XIV: San Antonio 2013 (Springer, Cham, 2014), pp. 255–271Google Scholar
  12. 186.
    L. Kämmerer, Constructing spatial discretizations for sparse multivariate trigonometric polynomials that allow for a fast discrete Fourier transform (2017). ArXiv e-prints 1703.07230Google Scholar
  13. 187.
    L. Kämmerer, Multiple rank-1 lattices as sampling schemes for multivariate trigonometric polynomials. J. Fourier Anal. Appl. 24(1), 17–44 (2018)MathSciNetCrossRefGoogle Scholar
  14. 188.
    L. Kämmerer, S. Kunis, D. Potts, Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complexity 28(1), 76–92 (2012)MathSciNetCrossRefGoogle Scholar
  15. 189.
    L. Kämmerer, S. Kunis, I. Melzer, D. Potts, T. Volkmer, Computational methods for the Fourier analysis of sparse high-dimensional functions, in Extraction of Quantifiable Information from Complex Systems (Springer, Cham, 2014), pp. 347–363zbMATHGoogle Scholar
  16. 190.
    L. Kämmerer, D. Potts, T. Volkmer, Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complexity 31(4), 543–576 (2015)MathSciNetCrossRefGoogle Scholar
  17. 191.
    L. Kämmerer, D. Potts, T. Volkmer, Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form. J. Complexity 31(3), 424–456 (2015)MathSciNetCrossRefGoogle Scholar
  18. 192.
    L. Kämmerer, D. Potts, T. Volkmer, High-dimensional sparse FFT based on sampling along multiple rank-1 lattices (2017). ArXiv e-prints 1711.05152Google Scholar
  19. 206.
    N.M. Korobov, Open image in new window, 2nd edn. (Moskovskii Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2004)Google Scholar
  20. 210.
    T. Kühn, W. Sickel, T. Ullrich, Approximation numbers of Sobolev embeddings - sharp constants and tractability. J. Complexity 30(2), 95–116 (2014)MathSciNetCrossRefGoogle Scholar
  21. 217.
    F.Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301–320 (2003). Oberwolfach Special IssueMathSciNetCrossRefGoogle Scholar
  22. 218.
    F.Y. Kuo, I.H. Sloan, H. Woźniakowski, Lattice rule algorithms for multivariate approximation in the average case setting. J. Complexity 24(2), 283–323 (2008)MathSciNetCrossRefGoogle Scholar
  23. 227.
    D. Li, F.J. Hickernell, Trigonometric spectral collocation methods on lattices, in Recent Advances in Scientific Computing and Partial Differential Equations (American Mathematical Society, Providence, 2003), pp. 121–132CrossRefGoogle Scholar
  24. 248.
    H. Munthe-Kaas, T. Sørevik, Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62(3), 155–165 (2012)MathSciNetCrossRefGoogle Scholar
  25. 255.
    H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84(6), 957–1041 (1978)MathSciNetCrossRefGoogle Scholar
  26. 288.
    D. Potts, T. Volkmer, Fast and exact reconstruction of arbitrary multivariate algebraic polynomials in Chebyshev form, in 11th International Conference on Sampling Theory and Applications (SampTA 2015) (2015), pp. 392–396Google Scholar
  27. 289.
    D. Potts, T. Volkmer, Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harmon. Anal. 41, 713–748 (2016)MathSciNetCrossRefGoogle Scholar
  28. 290.
    D. Potts, T. Volkmer, Multivariate sparse FFT based on rank-1 Chebyshev lattice sampling, in 12th International Conference on Sampling Theory and Applications (SampTA 2017) (2017), pp. 504–508Google Scholar
  29. 322.
    H.-J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces (Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1987)zbMATHGoogle Scholar
  30. 332.
    I.H. Sloan, S. Joe, Lattice Methods for Multiple Integration (Clarendon Press, Oxford University Press, New York, 1994)Google Scholar
  31. 333.
    I.H. Sloan, P.J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples. SIAM J. Numer. Anal. 24(1), 116–128 (1987)MathSciNetCrossRefGoogle Scholar
  32. 334.
    I.H. Sloan, A.V. Reztsov, Component-by-component construction of good lattice rules. Math. Comput. 71(237), 263–273 (2002)MathSciNetCrossRefGoogle Scholar
  33. 352.
    V.N. Temlyakov, Reconstruction of periodic functions of several variables from the values at the nodes of number-theoretic nets (in Russian). Anal. Math. 12(4), 287–305 (1986)MathSciNetCrossRefGoogle Scholar
  34. 353.
    V.N. Temlyakov, Approximation of Periodic Functions (Nova Science Publishers, Commack, 1993)zbMATHGoogle Scholar
  35. 366.
    T. Volkmer, Multivariate approximation and high-dimensional sparse FFT based on Rank-1 lattice sampling. Dissertation, Universitätsverlag Chemnitz, 2017Google Scholar
  36. 371.
    F. Weisz, Summability of Multi-Dimensional Fourier Series and Hardy Spaces (Kluwer Academic Publishers, Dordrecht, 2002)CrossRefGoogle Scholar
  37. 372.
    F. Weisz, Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory 7, 1–179 (2012)MathSciNetzbMATHGoogle Scholar
  38. 389.
    H. Yserentant, Regularity and Approximability of Electronic Wave Functions (Springer, Berlin, 2010)CrossRefGoogle Scholar
  39. 390.
    X. Zeng, K.-T. Leung, F.J. Hickernell, Error analysis of splines for periodic problems using lattice designs, in Monte Carlo and Quasi-Monte Carlo Methods 2004 (Springer, Berlin, 2006), pp. 501–514Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gerlind Plonka
    • 1
  • Daniel Potts
    • 2
  • Gabriele Steidl
    • 3
  • Manfred Tasche
    • 4
  1. 1.University of GöttingenGöttingenGermany
  2. 2.Chemnitz University of TechnologyChemnitzGermany
  3. 3.TU KaiserslauternKaiserslauternGermany
  4. 4.University of RostockRostockGermany

Personalised recommendations