Advertisement

Fourier Transforms

  • Gerlind Plonka
  • Daniel Potts
  • Gabriele Steidl
  • Manfred Tasche
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Fourier transforms of integrable functions defined on the whole real line \(\mathbb R\) are studied in Chap. 2. First, in Sect. 2.1, the Fourier transform is defined on the Banach space \(L_1(\mathbb R)\). The main properties of the Fourier transform are handled, such as the Fourier inversion formula and the convolution property. Then, in Sect. 2.2, the Fourier transform is introduced as a bijective mapping of the Hilbert space \(L_2(\mathbb R)\) onto itself by the theorem of Plancherel. The Hermite functions, which form an orthogonal basis of \(L_2(\mathbb R)\), are eigenfunctions of the Fourier transform. In Sect. 2.3, we present the Poisson summation formula and Shannon’s sampling theorem. Finally, two generalizations of the Fourier transform are sketched in Sect. 2.5, namely the windowed Fourier transform and the fractional Fourier transform.

References

  1. 52.
    A. Bultheel, H. Martínez, An introduction to the fractional Fourier transform and friends. Cubo 7(2), 201–221 (2005)MathSciNetzbMATHGoogle Scholar
  2. 53.
    A. Bultheel, H. Martínez-Sulbaran, A shattered survey of the fractional Fourier transform. Manuscript (2003)Google Scholar
  3. 54.
    A. Bultheel, H.E. Martínez-Sulbaran, Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)MathSciNetCrossRefGoogle Scholar
  4. 63.
    K. Chandrasenkharan, Classical Fourier Transforms (Spinger, Berlin, 1989)CrossRefGoogle Scholar
  5. 111.
    C. Févotte, N. Bertin, J.L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput. 21(3), 793–830 (2009)CrossRefGoogle Scholar
  6. 124.
    D. Gabor, The theory of communication. J. IEE 93, 429–457 (1946)Google Scholar
  7. 125.
    C. Gasquet, P. Witomski, Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets (Springer, Berlin, 1999)Google Scholar
  8. 146.
    L. Grafakos, Classical Fourier Analysis, 2nd edn. (Springer, New York, 2008)zbMATHGoogle Scholar
  9. 152.
    K. Gröchenig, Foundations of Time–Frequency Analysis (Birkhäuser, Boston, 2001)CrossRefGoogle Scholar
  10. 162.
    J.J. Healy, M.A. Kutay, H.M. Ozaktas, J.T. Sheridan, Linear Canonical Transforms. Theory and Applications (Springer, New York, 2016)Google Scholar
  11. 208.
    V.A. Kotelnikov, On the transmission capacity of the “ether” and wire in electrocommunications. Translated from Russian, in Modern Sampling Theory: Mathematics and Application (Birkhäuser, Boston, 2001), pp. 27–45Google Scholar
  12. 223.
    N.N. Lebedev, Special Functions and Their Applications, Translated from Russian (Dover, New York, 1972)Google Scholar
  13. 254.
    H.Q. Nguyen, M. Unser, J.P. Ward, Generalized Poisson summation formulas for continuous functions of polynomial growth. J. Fourier Anal. Appl. 23(2), 442–461 (2017)MathSciNetCrossRefGoogle Scholar
  14. 258.
    H. Nyquist, Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3(2), 324–346 (1924)CrossRefGoogle Scholar
  15. 260.
    H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, Chichester, 2001)Google Scholar
  16. 328.
    C.E. Shannon, Communication in the presence of noise. Proc. I.R.E. 37, 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  17. 341.
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971)zbMATHGoogle Scholar
  18. 360.
    M. Unser, Sampling – 50 years after Shannon. Proc. IEEE 88, 569–587 (2000)CrossRefGoogle Scholar
  19. 375.
    E.T. Whittaker, On the functions which are represented by the expansions of the interpolation-theory. Proc. R. Soc. Edinb. 35, 181–194 (1914)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gerlind Plonka
    • 1
  • Daniel Potts
    • 2
  • Gabriele Steidl
    • 3
  • Manfred Tasche
    • 4
  1. 1.University of GöttingenGöttingenGermany
  2. 2.Chemnitz University of TechnologyChemnitzGermany
  3. 3.TU KaiserslauternKaiserslauternGermany
  4. 4.University of RostockRostockGermany

Personalised recommendations