Advertisement

Fourier Series

  • Gerlind Plonka
  • Daniel Potts
  • Gabriele Steidl
  • Manfred Tasche
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Chapter 1 covers the classical theory of Fourier series of 2π-periodic functions. In the introductory section, we sketch Fourier’s theory on heat propagation. Section 1.2 introduces some basic notions such as Fourier coefficients and Fourier series of a 2π-periodic function. The convolution of 2π-periodic functions is handled in Sect. 1.3. Section 1.4 presents main results on the pointwise and uniform convergence of Fourier series. For a 2π-periodic, piecewise continuously differentiable function f, a complete proof of the important convergence theorem of Dirichlet–Jordan is given. Further we describe the Gibbs phenomenon for partial sums of the Fourier series of f near a jump discontinuity. Finally, in Sect. 1.5, we apply Fourier series in digital signal processing and describe the linear filtering of discrete signals.

References

  1. 46.
    W.L. Briggs, V.E. Henson, The DFT. An Owner’s Manual for the Discrete Fourier Transform (SIAM, Philadelphia, 1995)Google Scholar
  2. 85.
    R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993)CrossRefGoogle Scholar
  3. 114.
    G.B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd edn. (Wiley, New York, 1999)Google Scholar
  4. 119.
    J. Fourier, The Analytical Theory of Heat (Dover, New York, 1955). Translated from the FrenchzbMATHGoogle Scholar
  5. 125.
    C. Gasquet, P. Witomski, Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets (Springer, Berlin, 1999)Google Scholar
  6. 146.
    L. Grafakos, Classical Fourier Analysis, 2nd edn. (Springer, New York, 2008)zbMATHGoogle Scholar
  7. 167.
    H. Heuser, Lehrbuch der Analysis. Teil 2, 12th edn. (B. G. Teubner, Stuttgart, 2002)Google Scholar
  8. 203.
    A. Kolmogoroff, Une série de Fourier–Lebesgue divergente partout. C. R. Acad. Sci. Paris 183, 1327–1328 (1926)zbMATHGoogle Scholar
  9. 221.
    R. Lasser, Introduction to Fourier Series (Marcel Dekker, New York, 1996)zbMATHGoogle Scholar
  10. 229.
    E.H. Lieb, M. Loss, Analysis, 2nd edn. (American Mathematical Society, Providence, 2014)zbMATHGoogle Scholar
  11. 344.
    K.R. Stromberg, An Introduction to Classical Real Analysis. Corrected reprint of the 1981 original (AMS Chelsea Publishing, Providence, 2015)Google Scholar
  12. 374.
    D. Werner, Funktionalanalysis, 3rd edn. (Springer, Berlin, 2000)zbMATHGoogle Scholar
  13. 380.
    G.B. Wright, M. Javed, H. Montanelli, L.N. Trefethen, Extension of Chebfun to periodic functions. SIAM J. Sci. Comput. 37(5), C554–C573 (2015)MathSciNetCrossRefGoogle Scholar
  14. 392.
    A. Zygmund, Trigonometric Series, Vol. I, II, 3rd edn. (Cambridge University Press, Cambridge, 2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gerlind Plonka
    • 1
  • Daniel Potts
    • 2
  • Gabriele Steidl
    • 3
  • Manfred Tasche
    • 4
  1. 1.University of GöttingenGöttingenGermany
  2. 2.Chemnitz University of TechnologyChemnitzGermany
  3. 3.TU KaiserslauternKaiserslauternGermany
  4. 4.University of RostockRostockGermany

Personalised recommendations