Advertisement

Optimal Robust Scheduling of Renewable Energy-Based Smart Homes Using Information-Gap Decision Theory (IGDT)

  • Morteza Nazari-Heris
  • Parinaz AliasghariEmail author
  • Behnam Mohammadi-ivatloo
  • Mehdi Abapour
Chapter

Abstract

This chapter aims to study energy management of a renewable energy-based smart home, which contains of photovoltaic (PV) system for supplying a ratio of electrical demand of the considered home. Moreover, the plug-in electric vehicles (PEVs) are considered in obtaining optimal robust scheduling of the studied smart home. The main objective is minimizing the consumer’s bill as a smart home energy management scheduling problem. The controllable appliances are considered including washing machine, water heater, fridge, and electric vehicle. The robust self-scheduling of PV panel installed in the smart home is formulated, and the best suited set point of all suppliers is obtained. Information-gap decision theory (IGDT) is implemented in order to handle the uncertain PV power generation. The optimal robust scheduling of different appliance categories is provided considering economic optimal dispatch of the energy sources.

Keywords

Smart home Robust scheduling Information-gap decision theory Electric vehicles Photovoltaic (PV) system Uncertainty 

References

  1. 1.
    Nazari-Heris, M., Abapour, S., & Mohammadi-Ivatloo, B. (2017). Optimal economic dispatch of FC-CHP based heat and power micro-grids. Applied Thermal Engineering, 114, 756–769.CrossRefGoogle Scholar
  2. 2.
    Shakeri, M., Shayestegan, M., Reza, S. S., Yahya, I., Bais, B., Akhtaruzzaman, M., et al. (2018). Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source. Renewable Energy, 125, 108–120.CrossRefGoogle Scholar
  3. 3.
    Nizami, M. S. H., & Hossain, J. (2017, November). Optimal scheduling of electrical appliances and DER units for home energy management system. In Universities Power Engineering Conference (AUPEC), 2017 Australasian (pp. 1–6). IEEE.Google Scholar
  4. 4.
    Shimoji, T., Tahara, H., Matayoshi, H., Yona, A., & Senjyu, T. (2015). Optimal scheduling method of controllable loads in DC smart apartment building. International Journal of Emerging Electric Power Systems, 16(6), 579–589.CrossRefGoogle Scholar
  5. 5.
    Shirazi, E., & Jadid, S. (2015). Optimal residential appliance scheduling under dynamic pricing scheme via HEMDAS. Energy and Buildings, 93, 40–49.CrossRefGoogle Scholar
  6. 6.
    Motevasel, M., & Seifi, A. R. (2014). Expert energy management of a micro-grid considering wind energy uncertainty. Energy Conversion and Management, 83, 58–72.CrossRefGoogle Scholar
  7. 7.
    Ramchurn, S. D., Vytelingum, P., Rogers, A., & Jennings, N. R. (2011). Agent-based homeostatic control for green energy in the smart grid. ACM Transactions on Intelligent Systems and Technology (TIST), 2(4), 35.Google Scholar
  8. 8.
    Mayer, B., Killian, M., & Kozek, M. (2015). Management of hybrid energy supply systems in buildings using mixed-integer model predictive control. Energy Conversion and Management, 98, 470–483.CrossRefGoogle Scholar
  9. 9.
    Najafi-Ghalelou, A., Nojavan, S., & Zare, K. (2018). Heating and power hub models for robust performance of smart building using information gap decision theory. International Journal of Electrical Power & Energy Systems, 98, 23–35.CrossRefGoogle Scholar
  10. 10.
    Najafi-Ghalelou, A., Nojavan, S., & Zare, K. (2018). Robust thermal and electrical management of smart home using information gap decision theory. Applied Thermal Engineering, 132, 221–232.CrossRefGoogle Scholar
  11. 11.
    Katipamula, S., Chassin, D. P., Hatley, D. D., Pratt, R. G., & Hammerstrom, D. J. (2006). Transactive controls: A market-based GridWiseTM controls for building systems (No. PNNL-15921). Pacific Northwest National Lab (PNNL), Richland, WA, USA.Google Scholar
  12. 12.
    Alavi, S. A., Ahmadian, A., & Aliakbar-Golkar, M. (2015). Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method. Energy Conversion and Management, 95, 314–325.CrossRefGoogle Scholar
  13. 13.
    Najafi-Ghalelou, A., Nojavan, S., & Zare, K. (2018). Information gap decision theory-based risk-constrained scheduling of smart home energy consumption in the presence of solar thermal storage system. Solar Energy, 163, 271–287.CrossRefGoogle Scholar
  14. 14.
    Mohammadi-Ivatloo, B., Zareipour, H., Amjady, N., & Ehsan, M. (2013). Application of information-gap decision theory to risk-constrained self-scheduling of GenCos. IEEE Transactions on Power Systems, 28(2), 1093–1102.CrossRefGoogle Scholar
  15. 15.
    Alavi, S. A., Ahmadian, A., & Aliakbar-Golkar, M. (2015). Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method. Energy Conversion and Management, 95, 314–325.CrossRefGoogle Scholar
  16. 16.
    Chen, C., Qi, M., Kong, X., Huang, G., & Li, Y. (2018). Air pollutant and CO2 emissions mitigation in urban energy systems through a fuzzy possibilistic programming method under uncertainty. Journal of Cleaner Production, 192, 115–137.CrossRefGoogle Scholar
  17. 17.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., & Asadi, S. (2018). Robust stochastic optimal short-term generation scheduling of hydrothermal systems in deregulated environment. Journal of Energy Systems, 2, 168–179.Google Scholar
  18. 18.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G. B., & Shahidehpour, M. (2018). Robust short-term scheduling of integrated heat and power microgrids. IEEE Systems Journal, 99, 1–9.Google Scholar
  19. 19.
    Nojavan, S., Majidi, M., & Zare, K. (2017). Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT. Energy Conversion and Management, 147, 29–39.CrossRefGoogle Scholar
  20. 20.
    Nojavan, S., Majidi, M., Najafi-Ghalelou, A., Ghahramani, M., & Zare, K. (2017). A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach. Energy Conversion and Management, 138, 383–392.CrossRefGoogle Scholar
  21. 21.
    Ranjbar, H., & Hosseini, S. H. (2016). IGDT-based robust decision making applied to merchant-based transmission expansion planning. International Transactions on Electrical Energy Systems, 26(12), 2713–2726.CrossRefGoogle Scholar
  22. 22.
    Connell, A. O., Soroudi, A., & Keane, A. (2018). Distribution network operation under uncertainty using information gap decision theory. IEEE Transactions on Smart Grid, 9(3), 1848–1858.Google Scholar
  23. 23.
    Aghaei, J., Agelidis, V. G., Charwand, M., Raeisi, F., Ahmadi, A., Nezhad, A. E., & Heidari, A. (2017). Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Transactions on Smart Grid, 8(5), 2296–2304.CrossRefGoogle Scholar
  24. 24.
    Mesarić, P., & Krajcar, S. (2015). Home demand side management integrated with electric vehicles and renewable energy sources. Energy and Buildings, 108, 1–9.CrossRefGoogle Scholar
  25. 25.
    Aliasghari, P., Mohammadi-Ivatloo, B., Alipour, M., Abapour, M., & Zare, K. (2018). Optimal scheduling of plug-in electric vehicles and renewable micro-grid in energy and reserve markets considering demand response program. Journal of Cleaner Production, 186, 293–303.CrossRefGoogle Scholar
  26. 26.
    Moradi-Dalvand, M., Mohammadi-Ivatloo, B., Amjady, N., Zareipour, H., & Mazhab-Jafari, A. (2015). Self-scheduling of a wind producer based on information gap decision theory. Energy, 81, 588–600.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Morteza Nazari-Heris
    • 1
  • Parinaz Aliasghari
    • 1
    Email author
  • Behnam Mohammadi-ivatloo
    • 1
  • Mehdi Abapour
    • 1
  1. 1.Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations