Advertisement

Risk-Based Performance of Multi-carrier Energy Systems: Robust Optimization Framework

  • Majid MajidiEmail author
  • Sayyad Nojavan
  • Kazem Zare
Chapter

Abstract

Energy systems may be exposed to various uncertainties. In this chapter, in order to deal with severe uncertainty of upstream network price, robust optimization framework is presented to investigate uncertainty-based operation of multi-carrier energy system. Robust optimization technique determines the worst condition within the uncertainty and prepares appropriate strategies to handle such conditions in a way that safe operation of multi-carrier energy system is warrantied. So, a grid-connected multi-carrier energy system containing renewable and nonrenewable local generation units, combined heat and power (CHP), and boiler as well as electrical and thermal storage systems is studied under experiencing uncertainty of upstream network price, and the results declaring effectiveness of proposed technique are presented for comparison. It should be noted that simulations are carried out under general algebraic modeling system (GAMS) software.

Keywords

Uncertainty Robust optimization approach Multi-carrier energy systems Electrical and thermal storage systems 

References

  1. 1.
    Nojavan, S., Majidi, M., & Zare, K. (2018). Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management. Energy Conversion and Management, 156, 34–44.CrossRefGoogle Scholar
  2. 2.
    Nazari-Heris, M., Abapour, S., & Mohammadi-Ivatloo, B. (2017). Optimal economic dispatch of FC-CHP based heat and power micro-grids. Applied Thermal Engineering, 114, 756–769.CrossRefGoogle Scholar
  3. 3.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., & Gharehpetian, G. (2017). A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives. Renewable and Sustainable Energy Reviews, 81, 2128–2143.CrossRefGoogle Scholar
  4. 4.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G. B., & Shahidehpour, M. (2018). Robust short-term scheduling of integrated heat and power microgrids. IEEE Systems Journal, (99), 1–9.  https://doi.org/10.1109/JSYST.2018.2837224 (early access)
  5. 5.
    Majidi, M., Nojavan, S., Esfetanaj, N. N., Najafi-Ghalelou, A., & Zare, K. (2017). A multi-objective model for optimal operation of a battery/PV/fuel cell/grid hybrid energy system using weighted sum technique and fuzzy satisfying approach considering responsible load management. Solar Energy, 144, 79–89.CrossRefGoogle Scholar
  6. 6.
    Haghrah, A., Nazari-Heris, M., & Mohammadi-Ivatloo, B. (2016). Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation. Applied Thermal Engineering, 99, 465–475.CrossRefGoogle Scholar
  7. 7.
    Majidi, M., Nojavan, S., & Zare, K. (2017). A cost-emission framework for hub energy system under demand response program. Energy, 134, 157–166.CrossRefGoogle Scholar
  8. 8.
    Nojavan, S., Majidi, M., Najafi-Ghalelou, A., & Zare, K. (2018). Supply side management in renewable energy hubs. In Operation, planning, and analysis of energy storage systems in smart energy hubs (pp. 163–187). Cham: Springer.CrossRefGoogle Scholar
  9. 9.
    Majidi, M., Nojavan, S., & Zare, K. (2018). Multi-objective optimization framework for electricity and natural gas energy hubs under hydrogen storage system and demand response program. In Operation, planning, and analysis of energy storage systems in smart energy hubs (pp. 425–446). Cham: Springer.CrossRefGoogle Scholar
  10. 10.
    Nojavan, S., Majidi, M., & Esfetanaj, N. N. (2017). An efficient cost-reliability optimization model for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management. Energy, 139, 89–97.CrossRefGoogle Scholar
  11. 11.
    Majidi, M., & Nojavan, S. (2017). Optimal sizing of energy storage system in a renewable-based microgrid under flexible demand side management considering reliability and uncertainties. Journal of Operation and Automation in Power Engineering, 5(2), 205–214.Google Scholar
  12. 12.
    Nojavan, S., Majidi, M., & Zare, K. (2017). Stochastic multi-objective model for optimal sizing of energy storage system in a microgrid under demand response program considering reliability: A weighted sum method and fuzzy satisfying approach. Journal of Energy Management and Technology, 1(1), 61–70.Google Scholar
  13. 13.
    Majidi, M., Nojavan, S., & Zare, K. (2017). Optimal stochastic short-term thermal and electrical operation of fuel cell/photovoltaic/battery/grid hybrid energy system in the presence of demand response program. Energy Conversion and Management, 144, 132–142.CrossRefGoogle Scholar
  14. 14.
    Nazari-Heris, M., Mehdinejad, M., Mohammadi-Ivatloo, B., & Babamalek-Gharehpetian, G. (2017). Combined heat and power economic dispatch problem solution by implementation of whale optimization method. Neural Computing and Applications, 1–16.  https://doi.org/10.1007/s00521-017-3074-9.
  15. 15.
    Nojavan, S., Majidi, M., & Zare, K. (2017). Risk-based optimal performance of a PV/fuel cell/battery/grid hybrid energy system using information gap decision theory in the presence of demand response program. International Journal of Hydrogen Energy, 42(16), 11857–11867.CrossRefGoogle Scholar
  16. 16.
    Kamyab, F., & Bahrami, S. (2016). Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy, 106, 343–355.  https://doi.org/10.1016/j.energy.2016.03.074.CrossRefGoogle Scholar
  17. 17.
    Skarvelis-Kazakos, S., Papadopoulos, P., Grau Unda, I., Gorman, T., Belaidi, A., & Zigan, S. (2016). Multiple energy carrier optimisation with intelligent agents. Applied Energy, 167, 323–335.  https://doi.org/10.1016/j.apenergy.2015.10.130.CrossRefGoogle Scholar
  18. 18.
    Beigvand, S. D., Abdi, H., & La Scala, M. (2017). A general model for energy hub economic dispatch. Applied Energy, 190, 1090–1111.  https://doi.org/10.1016/j.apenergy.2016.12.126.CrossRefGoogle Scholar
  19. 19.
    AlRafea, K., Fowler, M., Elkamel, A., & Hajimiragha, A. (2016). Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. International Journal of Hydrogen Energy, 41(38), 16718–16728.  https://doi.org/10.1016/j.ijhydene.2016.06.256.CrossRefGoogle Scholar
  20. 20.
    Evins, R., Orehounig, K., Dorer, V., & Carmeliet, J. (2014). New formulations of the ‘energy hub’ model to address operational constraints. Energy, 73, 387–398.  https://doi.org/10.1016/j.energy.2014.06.029.CrossRefGoogle Scholar
  21. 21.
    Sheikhi, A., Bahrami, S., & Ranjbar, A. M. (2015). An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy, 89, 490–499.  https://doi.org/10.1016/j.energy.2015.05.109.CrossRefGoogle Scholar
  22. 22.
    Moghaddam, I. G., Saniei, M., & Mashhour, E. (2016). A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building. Energy, 94, 157–170.  https://doi.org/10.1016/j.energy.2015.10.137.CrossRefGoogle Scholar
  23. 23.
    Shariatkhah, M.-H., Haghifam, M.-R., Chicco, G., & Parsa-Moghaddam, M. (2016). Adequacy modeling and evaluation of multi-carrier energy systems to supply energy services from different infrastructures. Energy, 109, 1095–1106.  https://doi.org/10.1016/j.energy.2016.04.116.CrossRefGoogle Scholar
  24. 24.
    Rastegar, M., & Fotuhi-Firuzabad, M. (2015). Load management in a residential energy hub with renewable distributed energy resources. Energy and Buildings, 107, 234–242.  https://doi.org/10.1016/j.enbuild.2015.07.028.CrossRefGoogle Scholar
  25. 25.
    Rastegar, M., Fotuhi-Firuzabad, M., & Lehtonen, M. (2015). Home load management in a residential energy hub. Electric Power Systems Research, 119, 322–328.  https://doi.org/10.1016/j.epsr.2014.10.011.CrossRefGoogle Scholar
  26. 26.
    Sepponen, M., & Heimonen, I. (2016). Business concepts for districts’ energy hub systems with maximised share of renewable energy. Energy and Buildings, 124, 273–280.  https://doi.org/10.1016/j.enbuild.2015.07.066.CrossRefGoogle Scholar
  27. 27.
    Xu, X., Jia, H., Wang, D., Yu, D. C., & Chiang, H.-D. (2015). Hierarchical energy management system for multi-source multi-product microgrids. Renewable Energy, 78, 621–630.  https://doi.org/10.1016/j.renene.2015.01.039.CrossRefGoogle Scholar
  28. 28.
    Shabanpour-Haghighi, A., & Seifi, A. R. (2016). Effects of district heating networks on optimal energy flow of multi-carrier systems. Renewable and Sustainable Energy Reviews, 59, 379–387.  https://doi.org/10.1016/j.rser.2015.12.349.CrossRefGoogle Scholar
  29. 29.
    Orehounig, K., Evins, R., & Dorer, V. (2015). Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy, 154, 277–289.  https://doi.org/10.1016/j.apenergy.2015.04.114.CrossRefGoogle Scholar
  30. 30.
    Ma, T., Wu, J., & Hao, L. (2017). Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub. Energy Conversion and Management, 133, 292–306.  https://doi.org/10.1016/j.enconman.2016.12.011.CrossRefGoogle Scholar
  31. 31.
    Brahman, F., Honarmand, M., & Jadid, S. (2015). Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings, 90, 65–75.  https://doi.org/10.1016/j.enbuild.2014.12.039.CrossRefGoogle Scholar
  32. 32.
    Derafshi Beigvand, S., Abdi, H., & La Scala, M. (2016). Optimal operation of multicarrier energy systems using time varying acceleration coefficient gravitational search algorithm. Energy, 114, 253–265.  https://doi.org/10.1016/j.energy.2016.07.155.CrossRefGoogle Scholar
  33. 33.
    Wasilewski, J. (2015). Integrated modeling of microgrid for steady-state analysis using modified concept of multi-carrier energy hub. International Journal of Electrical Power & Energy Systems, 73, 891–898.  https://doi.org/10.1016/j.ijepes.2015.06.022.CrossRefGoogle Scholar
  34. 34.
    Orehounig, K., Evins, R., Dorer, V., & Carmeliet, J. (2014). Assessment of renewable energy integration for a village using the energy hub concept. Energy Procedia, 57, 940–949.  https://doi.org/10.1016/j.egypro.2014.10.076.CrossRefGoogle Scholar
  35. 35.
    Najafi, A., Falaghi, H., Contreras, J., & Ramezani, M. (2016). Medium-term energy hub management subject to electricity price and wind uncertainty. Applied Energy, 168, 418–433.  https://doi.org/10.1016/j.apenergy.2016.01.074.CrossRefGoogle Scholar
  36. 36.
    Pazouki, S., & Haghifam, M.-R. (2016). Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. International Journal of Electrical Power & Energy Systems, 80, 219–239.  https://doi.org/10.1016/j.ijepes.2016.01.044.CrossRefGoogle Scholar
  37. 37.
    Pazouki, S., Haghifam, M.-R., & Moser, A. (2014). Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. International Journal of Electrical Power & Energy Systems, 61, 335–345.CrossRefGoogle Scholar
  38. 38.
    Vahid-Pakdel, M., Nojavan, S., Mohammadi-ivatloo, B., & Zare, K. (2017). Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Conversion and Management, 145, 117–128.CrossRefGoogle Scholar
  39. 39.
    Sanjari, M., Karami, H., & Gooi, H. (2016). Micro-generation dispatch in a smart residential multi-carrier energy system considering demand forecast error. Energy Conversion and Management, 120, 90–99.CrossRefGoogle Scholar
  40. 40.
    Shariatkhah, M.-H., Haghifam, M.-R., Parsa-Moghaddam, M., & Siano, P. (2015). Modeling the reliability of multi-carrier energy systems considering dynamic behavior of thermal loads. Energy and Buildings, 103, 375–383.  https://doi.org/10.1016/j.enbuild.2015.06.001.CrossRefGoogle Scholar
  41. 41.
    Koeppel, G., & Andersson, G. (2009). Reliability modeling of multi-carrier energy systems. Energy, 34(3), 235–244.  https://doi.org/10.1016/j.energy.2008.04.012.CrossRefGoogle Scholar
  42. 42.
    Perera, A. T. D., Nik, V. M., Mauree, D., & Scartezzini, J.-L. (2017). Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid. Applied Energy, 190, 232–248.  https://doi.org/10.1016/j.apenergy.2016.12.127.CrossRefGoogle Scholar
  43. 43.
    Shabanpour-Haghighi, A., & Seifi, A. R. (2015). Multi-objective operation management of a multi-carrier energy system. Energy, 88, 430–442.  https://doi.org/10.1016/j.energy.2015.05.063.CrossRefGoogle Scholar
  44. 44.
    Maroufmashat, A., Elkamel, A., Fowler, M., Sattari, S., Roshandel, R., Hajimiragha, A., Walker, S., & Entchev, E. (2015). Modeling and optimization of a network of energy hubs to improve economic and emission considerations. Energy, 93, 2546–2558.  https://doi.org/10.1016/j.energy.2015.10.079.CrossRefGoogle Scholar
  45. 45.
    La Scala, M., Vaccaro, A., & Zobaa, A. F. (2014). A goal programming methodology for multiobjective optimization of distributed energy hubs operation. Applied Thermal Engineering, 71(2), 658–666.  https://doi.org/10.1016/j.applthermaleng.2013.10.031.CrossRefGoogle Scholar
  46. 46.
    Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17.  https://doi.org/10.1016/j.energy.2013.10.041.CrossRefGoogle Scholar
  47. 47.
    Nojavan, S., Najafi-Ghalelou, A., Majidi, M., & Zare, K. (2018). Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach. Energy, 142, 250–257.CrossRefGoogle Scholar
  48. 48.
    Nazari-Heris, M., Madadi, S., & Mohammadi-Ivatloo, B. (2018). Optimal management of hydrothermal-based micro-grids employing robust optimization method. In Classical and recent aspects of power system optimization (pp. 407–420). Elsevier.Google Scholar
  49. 49.
    Nazari-Heris, M., & Mohammadi-Ivatloo, B. (2018). Application of robust optimization method to power system problems. In Classical and recent aspects of power system optimization (pp. 19–32). Elsevier.Google Scholar
  50. 50.
    Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98(1–3), 49–71.MathSciNetCrossRefGoogle Scholar
  51. 51.
    The GAMS Software Website. (2017). [Online]. Available: http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fsolvers%2Findex.html

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Electrical EngineeringUniversity of BonabBonabIran

Personalised recommendations