Advertisement

Robust Transmission Network Expansion Planning (IGDT, TOAT, Scenario Technique Criteria)

  • Shahriar Abbasi
  • Hamdi AbdiEmail author
Chapter

Abstract

The aim of transmission network expansion planning (TNEP) is providing enough capacity to transfer power from generation section to load centers in a reliable and economically efficient manner. The mission of this problem is identifying where, when, and what type of new transmission lines should be installed in transmission network. In this chapter, the robust TNEP (RTNEP) in the presence of two major uncertainties in power systems (loads and wind power generation) is studied. The robust methods of (a) information-gap decision theory (IGDT), (b) Taguchi’s orthogonal array testing (TOAT), and (c) scenario technique criteria (min-max regret criterion) are proposed and simulated here. Using each of these methods, the robust expansion plan for the modified 6-bus Garver transmission network test system is calculated. The obtained results verify the validity of the mentioned methods in RTNEP. These methods can easily be implemented on any large- and real-scale power system. Furthermore, different uncertainty types can be easily considered in this regard.

Keywords

Robust transmission network expansion planning (RTNEP) Uncertainty Wind power generation IGDT TOAT Scenario technique criteria 

References

  1. 1.
    Abbasi, S., & Abdi, H. (2016). Multiobjective transmission expansion planning problem based on ACOPF considering load and wind power generation uncertainties. International Transactions on Electrical Energy Systems, 27(6), 1–15.Google Scholar
  2. 2.
    Abbasi, S., Abdi, H., Bruno, S., & La, M. (2018). Transmission network expansion planning considering load correlation using unscented transformation. International Journal of Electrical Power and Energy Systems, 103, 12–20.CrossRefGoogle Scholar
  3. 3.
    Buygi, M. O., Balzer, G., Shanechi, H. M., & Shahidehpour, M. (2004). Market-based transmission expansion planning. IEEE Transactions on Power Apparatus and Systems, 19(4), 2060–2067.CrossRefGoogle Scholar
  4. 4.
    Orfanos, G. A., Georgilakis, P. S., & Hatziargyriou, N. D. (2013). Transmission expansion planning of systems with increasing wind power integration. IEEE Transactions on Power Apparatus and Systems, 28(2), 1355–1362.CrossRefGoogle Scholar
  5. 5.
    Hemmati, R., Hooshmand, R. A., & Khodabakhshian, A. (2014). Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties. Renewable and Sustainable Energy Reviews, 29, 1–10.CrossRefGoogle Scholar
  6. 6.
    Moeini-Aghtaie, M., Abbaspour, A., & Fotuhi-Firuzabad, M. (2012). Incorporating large-scale distant wind farms in probabilistic transmission expansion planning; part I: Theory and algorithm. IEEE Transactions on Power Apparatus and Systems, 27(3), 1594–1601.CrossRefGoogle Scholar
  7. 7.
    Moeini-Aghtaie, M., Abbaspour, A., & Fotuhi-Firuzabad, M. (2012). Incorporating large-scale distant wind farms in probabilistic transmission expansion planning; part II: Case studies. IEEE Transactions on Power Apparatus and Systems, 27(3), 1585–1593.CrossRefGoogle Scholar
  8. 8.
    Garver, L. L. (1970). Transmission network estimation using linear programming. IEEE Transactions on Power Apparatus and Systems, 7, 1688–1697.CrossRefGoogle Scholar
  9. 9.
    Fang, R., & Hill, D. J. (2003). A new strategy for transmission expansion in competitive electricity markets. IEEE Transactions on Power Apparatus and Systems, 18(1), 374–380.CrossRefGoogle Scholar
  10. 10.
    Maghouli, P., Hosseini, S. H., Buygi, M. O., & Shahidehpour, M. (2009). A multi-objective framework for transmission expansion planning in deregulated environments. IEEE Transactions on Power Apparatus and Systems, 24(2), 1051–1061.CrossRefGoogle Scholar
  11. 11.
    Aien, M., Fotuhi-Firuzabad, M., Member, S., & Aminifar, F. (2012). Probabilistic load flow in correlated uncertain environment using unscented transformation. IEEE Transactions on Power Apparatus and Systems, 27(4), 2233–2241.CrossRefGoogle Scholar
  12. 12.
    Verbic, G., Claudio, A., & Canizares, A. (2006). Probabilistic optimal power flow in electricity markets based on a two point estimate method. IEEE Transactions on Power Apparatus and Systems, 21(4), 1883–1894.CrossRefGoogle Scholar
  13. 13.
    Papaefthymiou, G., & Kurowicka, D. (2009). Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Transactions on Power Apparatus and Systems, 24(1), 40–49.CrossRefGoogle Scholar
  14. 14.
    Rabiee, A., Soroudi, A., & Keane, A. (2014). Information gap decision theory based OPF with HVDC connected wind farms. IEEE Transactions on Power Apparatus and Systems, 30(6), 3396–3406.CrossRefGoogle Scholar
  15. 15.
    Dehghan, S., Kazemi, A., & Amjady, N. (2014). Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method. IET Generation Transmission and Distribution, 8(5), 828–840.CrossRefGoogle Scholar
  16. 16.
    Taherkhani, M., & Hosseini, S. H. (2015). IGDT-based multi-stage transmission expansion planning model incorporating optimal wind farm integration. International Transactions on Electrical Energy Systems, 25(10), 2340–2358.CrossRefGoogle Scholar
  17. 17.
    Alseddiqui, J., & Thomas, R. J. (2006). Transmission expansion planning using multi-objective optimization. Power and Energy Society General Meeting (pp. 1–8). IEEE.Google Scholar
  18. 18.
    Tsui, K. (1992). An overview of Taguchi method and newly developed statistical methods for robust design. IIE Transactions, 24(5), 44–57.CrossRefGoogle Scholar
  19. 19.
    “Orthogonal Arrays (Taguchi Designs).” [Online]. Available: http://www.york.ac.uk/depts/maths/tables/orthogonal.htm.
  20. 20.
    Jiang, R., Wang, J., & Zhang, M. (2013). Two-stage minimax regret robust unit commitment. IEEE Transactions on Power Apparatus and Systems, 28(3), 2271–2282.CrossRefGoogle Scholar
  21. 21.
    Maghouli, P., Hosseini, S. H., Oloomi Buygi, M., & Shahidehpour, M. (2011). A scenario-based multi-objective model for multi-stage transmission expansion planning. IEEE Transactions on Power Apparatus and Systems, 26(1), 470–478.CrossRefGoogle Scholar
  22. 22.
    Chen, B., et al. (2014). Robust optimization for transmission expansion planning: Minimax cost vs. minimax regret. IEEE Transactions on Power Apparatus and Systems, 29(6), 3069–3077.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Electrical Engineering Department, Faculty of EngineeringRazi UniversityKermanshahIran

Personalised recommendations