Asymptotically Flat Spacetimes

  • Geoffrey Compère
Part of the Lecture Notes in Physics book series (LNP, volume 952)


For the next lecture, we consider four-dimensional asymptotically flat spacetimes, which are the solutions of General Relativity with localised energy-momentum sources. We will start with a review of the work of Penrose on the conformal compactification of asymptotically flat spacetimes in order to get a global view on the asymptotic structure. We will then concentrate on the properties of radiative fields by reviewing the work of van der Burg, Bondi, Metzner and Sachs of 1962. One may think at first that the group of asymptotic symmetries of radiative spacetimes is the Poincaré group, but a larger group appears, the BMS group which contains so-called supertranslations. Additional symmetries, known as superrotations, also play a role and we shall briefly discuss them too. Finally, we will give some comments on the scattering problem in General Relativity. We will show that the extended asymptotic group gives conserved quantities once junction conditions are fixed at spatial infinity


  1. 1.
    G. Barnich, C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 105, 111103 (2010). arXiv:0909.2617 [gr-qc];
  2. 2.
    G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. J. High Energy Phys. 1005, 062 (2010). arXiv:1001.1541 [hep-th];
  3. 3.
    G. Barnich, C. Troessaert, BMS charge algebra. J. High Energy Phys. 12, 105 (2011). arXiv:1106.0213 [hep-th];
  4. 4.
    L. Bieri, P. Chen, S.-T. Yau, Null asymptotics of solutions of the Einstein-Maxwell equations in general relativity and gravitational radiation. Adv. Theor. Math. Phys. 15(4), 1085–1113 (2011). arXiv:1011.2267 [math.DG]; MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Blanchet, T. Damour, Tail transported temporal correlations in the dynamics of a gravitating system. Phys. Rev. D37, 1410 (1988). ADSGoogle Scholar
  6. 6.
    L. Blanchet, T. Damour, Hereditary effects in gravitational radiation. Phys. Rev. D46, 4304–4319 (1992). ADSMathSciNetGoogle Scholar
  7. 7.
    H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A269, 21–52 (1962).
  8. 8.
    R. Bousso, M. Porrati, Soft hair as a soft wig. Class. Quant. Grav. 34(20), 204001 (2017). arXiv:1706.00436 [hep-th]; ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Cachazo, A. Strominger, Evidence for a new soft graviton theorem (2014, unpublished). arXiv:1404.4091 [hep-th]
  10. 10.
    M. Campiglia, A. Laddha, Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D90(12), 124028 (2014). arXiv:1408.2228 [hep-th];
  11. 11.
    M. Campiglia, A. Laddha, New symmetries for the Gravitational S-matrix. J. High Energy Phys. 04, 076 (2015). arXiv:1502.02318 [hep-th];
  12. 12.
    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments. Phys. Rev. Lett. 67, 1486–1489 (1991). ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Christodoulou, S. Klainerman, The Global nonlinear stability of the Minkowski space. Princeton Legacy Library, 1993Google Scholar
  14. 14.
    G. Compère, A. Fiorucci, Asymptotically flat spacetimes with BMS3 symmetry. Class. Quant. Grav. 34(20), 204002 (2017). arXiv:1705.06217 [hep-th]; ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Compère, J. Long, Vacua of the gravitational field. J. High Energy Phys. 07, 137 (2016). arXiv:1601.04958 [hep-th];
  16. 16.
    G. Compère, J. Long, Classical static final state of collapse with supertranslation memory. Class. Quant. Grav. 33(19), 195001 (2016). arXiv:1602.05197 [gr-qc]; ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Compère, A. Fiorucci, R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra. J. High Energy Phys. 2018, 200 (2018). ADSCrossRefGoogle Scholar
  18. 18.
    J. de Boer, S.N. Solodukhin, A holographic reduction of Minkowski space-time. Nucl. Phys. B665, 545–593 (2003). arXiv:hep-th/0303006 [hep-th];
  19. 19.
    E.E. Flanagan, D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra. Phys. Rev. D95(4), 044002 (2017). arXiv:1510.03386 [hep-th];
  20. 20.
    S.W. Hawking, M.J. Perry, A. Strominger, Soft hair on black holes. Phys. Rev. Lett. 116(23), 231301 (2016). arXiv:1601.00921 [hep-th];
  21. 21.
    T. He, V. Lysov, P. Mitra, A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem. J. High Energy Phys. 05, 151 (2015) . arXiv:1401.7026 [hep-th].
  22. 22.
    M. Henneaux, C. Troessaert, BMS group at spatial infinity: the Hamiltonian (ADM) approach. J. High Energy Phys. 03, 147 (2018). arXiv:1801.03718 [gr-qc].
  23. 23.
    P.D. Lasky, E. Thrane, Y. Levin, J. Blackman, Y. Chen, Detecting gravitational-wave memory with LIGO: implications of GW150914. Phys. Rev. Lett. 117(6), 061102 (2016). arXiv:1605.01415 [astro-ph.HE];
  24. 24.
    M. Mirbabayi, M. Porrati, Dressed hard states and black hole soft hair. Phys. Rev. Lett. 117(21), 211301 (2016). arXiv:1607.03120 [hep-th].
  25. 25.
    D.A. Nichols, Spin memory effect for compact binaries in the post-Newtonian approximation. Phys. Rev. D95(8), 084048 (2017). arXiv:1702.03300 [gr-qc];
  26. 26.
    S. Pasterski, A. Strominger, A. Zhiboedov, New gravitational memories. J. High Energy Phys. 12, 053 (2016). arXiv:1502.06120 [hep-th];
  27. 27.
    R. Penrose, The geometry of impulsive gravitational waves, in General Relativity: Papers in Honour of J.L. Synge, ed. by L. O’Raifeartaigh (Clarendon Press, Oxford, 1972), pp. 101–115Google Scholar
  28. 28.
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times. Proc. R. Soc. Lond. A270, 103–126 (1962).
  29. 29.
    A. Strominger, On BMS invariance of gravitational scattering. J. High Energy Phys. 07, 152 (2014). arXiv:1312.2229 [hep-th];
  30. 30.
    A. Strominger, Black hole information revisited (2017, unpublished). arXiv:1706.07143 [hep-th]
  31. 31.
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory (Princeton University Press, Princeton, 2018). ISBN 978-0-691-17950-6CrossRefGoogle Scholar
  32. 32.
    A. Strominger, A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems. J. High Energy Phys. 01, 086 (2016). arXiv:1411.5745 [hep-th];
  33. 33.
    A. Strominger, A. Zhiboedov, Superrotations and black hole pair creation. Class. Quant. Grav. 34(6), 064002 (2017). arXiv:1610.00639 [hep-th]; ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    K.S. Thorne, Gravitational-wave bursts with memory: the Christodoulou effect. Phys. Rev. D45(2), 520–524 (1992) . ADSMathSciNetGoogle Scholar
  35. 35.
    C. Troessaert, The BMS4 algebra at spatial infinity. arXiv:1704.06223 [hep-th]
  36. 36.
    S. Weinberg, Infrared photons and gravitons. Phys. Rev. 140, B516–B524 (1965) . ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Y.B. Zel’dovich, A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars. Sov. Astron. 18, 17 (1974)ADSGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geoffrey Compère
    • 1
  1. 1.Physique théorique mathématiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations