Advertisement

Sex-Related Differences in Alzheimer’s Disease

  • Diler AcarEmail author
  • Carolyn Jane King
Chapter

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease leading to cognitive deficits, functional impairment as well as behavioral changes. The pathophysiology of AD involves the accumulation of neurotoxic amyloid beta protein (Aβ), in early phases, inducing inflammatory and microglial cascades, mitochondrial dysfunction and oxidative stress. These processes then lead to hyperphosphorylation of the microtubule stabilizing protein tau and formation of neurofibrillary tangles. These changes cause synaptic and neuronal dysfunction by disruption of intracellular signaling and widespread cortical dysfunction. Accumulation of amyloid plaques and neurofibrillary tangles further disrupt synaptic integrity and result in neuronal cell death. Despite these well-defined neuropathological hallmarks, human and animal models demonstrate that amyloid plaque burden and distribution do not correlate with cognitive deficit. Neurofibrillary tangles can exist without neuronal impairment, and it is the synaptic loss and network dysfunction that are thought to be related to cognitive deficit [1–4].

References

  1. 1.
    Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature. 2006;443(7113):768–73.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011;10(9):829–43.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13(7):812–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Association As. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13(4):325–73.CrossRefGoogle Scholar
  6. 6.
    Seshadri S, Wolf PA, Beiser A, Au R, McNulty K, White R, et al. Lifetime risk of dementia and Alzheimer’s disease. The impact of mortality on risk estimates in the Framingham Study. Neurology. 1997;49(6):1498–504.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hebert LE, Scherr PA, McCann JJ, Beckett LA, Evans DA. Is the risk of developing Alzheimer’s disease greater for women than for men? Am J Epidemiol. 2001;153(2):132–6.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Larson EB, Shadlen MF, Wang L, McCormick WC, Bowen JD, Teri L, et al. Survival after initial diagnosis of Alzheimer disease. Ann Intern Med. 2004;140(7):501–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chêne G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, et al. Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimers Dement. 2015;11(3):310–20.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Petersen RC, Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology. 2010;75(10):889–97.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ganguli M, Dodge HH, Shen C, DeKosky ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology. 2004;63(1):115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Koivisto K, Reinikainen KJ, Hänninen T, Vanhanen M, Helkala EL, Mykkänen L, et al. Prevalence of age-associated memory impairment in a randomly selected population from eastern Finland. Neurology. 1995;45(4):741–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS, Boeve BF, et al. The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging. Neurology. 2012;78(5):342–51.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Caracciolo B, Palmer K, Monastero R, Winblad B, Bäckman L, Fratiglioni L. Occurrence of cognitive impairment and dementia in the community: a 9-year-long prospective study. Neurology. 2008;70(19 Pt 2):1778–85.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Fitzpatrick AL, Kuller LH, Lopez OL, Kawas CH, Jagust W. Survival following dementia onset: Alzheimer’s disease and vascular dementia. J Neurol Sci. 2005;229-230:43–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ganguli M, Dodge HH, Shen C, Pandav RS, DeKosky ST. Alzheimer disease and mortality: a 15-year epidemiological study. Arch Neurol. 2005;62(5):779–84.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Knopman DS, Roberts RO, Pankratz VS, Cha RH, Rocca WA, Mielke MM, et al. Incidence of dementia among participants and nonparticipants in a longitudinal study of cognitive aging. Am J Epidemiol. 2014;180(4):414–23.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bachman DL, Wolf PA, Linn RT, Knoefel JE, Cobb JL, Belanger AJ, et al. Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham Study. Neurology. 1993;43(3 Pt 1):515–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Miech RA, Breitner JC, Zandi PP, Khachaturian AS, Anthony JC, Mayer L. Incidence of AD may decline in the early 90s for men, later for women: The Cache County study. Neurology. 2002;58(2):209–18.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Letenneur L, Gilleron V, Commenges D, Helmer C, Orgogozo JM, Dartigues JF. Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry. 1999;66(2):177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ott A, Breteler MM, van Harskamp F, Stijnen T, Hofman A. Incidence and risk of dementia. The Rotterdam Study. Am J Epidemiol. 1998;147(6):574–80.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, Winblad B. Very old women at highest risk of dementia and Alzheimer’s disease: incidence data from the Kungsholmen Project, Stockholm. Neurology. 1997;48(1):132–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, Girling DM, et al. Incidence of clinically diagnosed subtypes of dementia in an elderly population. Cambridge Project for Later Life. Br J Psychiatry. 1995;167(2):255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Giedd JN, Raznahan A, Mills KL, Lenroot RK. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differ. 2012;3(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Allen JS, Damasio H, Grabowski TJ, Bruss J, Zhang W. Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. NeuroImage. 2003;18(4):880–94.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Paus T, Otaky N, Caramanos Z, MacDonald D, Zijdenbos A, D’Avirro D, et al. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol. 1996;376(4):664–73.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci. 1999;19(10):4065–72.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Peters M, Jäncke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H. Unsolved problems in comparing brain sizes in Homo sapiens. Brain Cogn. 1998;37(2):254–85.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex. 2001;11(6):490–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT. The neuroanatomy of general intelligence: sex matters. NeuroImage. 2005;25(1):320–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nopoulos P, Flaum M, O’Leary D, Andreasen NC. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res. 2000;98(1):1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Carne RP, Vogrin S, Litewka L, Cook MJ. Cerebral cortex: an MRI-based study of volume and variance with age and sex. J Clin Neurosci. 2006;13(1):60–72.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62(8):847–55.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mcglone J. Sex differences in human brain asymmetry: a critical survey. Behav Brain Sci. 1980;3(2):215–27.CrossRefGoogle Scholar
  35. 35.
    Murphy DG, DeCarli C, McIntosh AR, Daly E, Mentis MJ, Pietrini P, et al. Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry. 1996;53(7):585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Blatter DD, Bigler ED, Gale SD, Johnson SC, Anderson CV, Burnett BM, et al. Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. AJNR Am J Neuroradiol. 1995;16(2):241–51.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage. 2001;14(1 Pt 1):21–36.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Witelson SF, Beresh H, Kigar DL. Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain. 2006;129(Pt 2):386–98.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Skup M, Zhu H, Wang Y, Giovanello KS, Lin JA, Shen D, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. NeuroImage. 2011;56(3):890–906.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging. 2016;31(2):166–75.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Devous MD, Stokely EM, Chehabi HH, Bonte FJ. Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography. J Cereb Blood Flow Metab. 1986;6(1):95–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Gur RC, Gur RE, Obrist WD, Hungerbuhler JP, Younkin D, Rosen AD, et al. Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science. 1982;217(4560):659–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Jones K, Johnson KA, Becker JA, Spiers PA, Albert MS, Holman BL. Use of singular value decomposition to characterize age and gender differences in SPECT cerebral perfusion. J Nucl Med. 1998;39(6):965–73.PubMedGoogle Scholar
  44. 44.
    Slosman DO, Chicherio C, Ludwig C, Genton L, de Ribaupierre S, Hans D, et al. (133) Xe SPECT cerebral blood flow study in a healthy population: determination of T-scores. J Nucl Med. 2001;42(6):864–70.PubMedGoogle Scholar
  45. 45.
    Esposito G, Van Horn JD, Weinberger DR, Berman KF. Gender differences in cerebral blood flow as a function of cognitive state with PET. J Nucl Med. 1996;37(4):559–64.PubMedGoogle Scholar
  46. 46.
    Podreka I, Baumgartner C, Suess E, Müller C, Brücke T, Lang W, et al. Quantification of regional cerebral blood flow with IMP-SPECT. Reproducibility and clinical relevance of flow values. Stroke. 1989;20(2):183–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Baxter LR, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res. 1987;21(3):237–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Andreason PJ, Zametkin AJ, Guo AC, Baldwin P, Cohen RM. Gender-related differences in regional cerebral glucose metabolism in normal volunteers. Psychiatry Res. 1994;51(2):175–83.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hatazawa J, Brooks RA, Di Chiro G, Campbell G. Global cerebral glucose utilization is independent of brain size: a PET Study. J Comput Assist Tomogr. 1987;11(4):571–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Azari NP, Rapoport SI, Grady CL, DeCarli C, Haxby JV, Schapiro MB, et al. Gender differences in correlations of cerebral glucose metabolic rates in young normal adults. Brain Res. 1992;574(1–2):198–208.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kuhl DE, Metter EJ, Riege WH, Phelps ME. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1982;2(2):163–71.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Reiman EM, Armstrong SM, Matt KS, Mattox JH. The application of positron emission tomography to the study of the normal menstrual cycle. Hum Reprod. 1996;11(12):2799–805.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.CrossRefGoogle Scholar
  54. 54.
    Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 2017;74(10):1178–89.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Altmann A, Tian L, Henderson VW, Greicius MD, Investigators ADNI. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563–73.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Damoiseaux JS, Seeley WW, Zhou J, Shirer WR, Coppola G, Karydas A, et al. Gender modulates the APOE ε4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. J Neurosci. 2012;32(24):8254–62.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Panossian LA, Porter VR, Valenzuela HF, Zhu X, Reback E, Masterman D, et al. Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging. 2003;24(1):77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Jacobs EG, Kroenke C, Lin J, Epel ES, Kenna HA, Blackburn EH, et al. Accelerated cell aging in female APOE-ε4 carriers: implications for hormone therapy use. PLoS One. 2013;8(2):e54713.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Li R, Shen Y, Yang LB, Lue LF, Finch C, Rogers J. Estrogen enhances uptake of amyloid beta-protein by microglia derived from the human cortex. J Neurochem. 2000;75(4):1447–54.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tang YP, Haslam SZ, Conrad SE, Sisk CL. Estrogen increases brain expression of the mRNA encoding transthyretin, an amyloid beta scavenger protein. J Alzheimers Dis. 2004;6(4):413–20; discussion 43-9PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Quintela T, Gonçalves I, Baltazar G, Alves CH, Saraiva MJ, Santos CR. 17beta-estradiol induces transthyretin expression in murine choroid plexus via an oestrogen receptor dependent pathway. Cell Mol Neurobiol. 2009;29(4):475–83.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Murphy GM, Zhao F, Yang L, Cordell B. Expression of macrophage colony-stimulating factor receptor is increased in the AbetaPP(V717F) transgenic mouse model of Alzheimer’s disease. Am J Pathol 200;157 (3):895–904.Google Scholar
  64. 64.
    Huang J, Guan H, Booze RM, Eckman CB, Hersh LB. Estrogen regulates neprilysin activity in rat brain. Neurosci Lett. 2004;367(1):85–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Woolley CS. Acute effects of estrogen on neuronal physiology. Annu Rev Pharmacol Toxicol. 2007;47:657–80.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol. 2008;29(2):219–37.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Foy MR, Baudry M, Diaz Brinton R, Thompson RF. Estrogen and hippocampal plasticity in rodent models. J Alzheimers Dis. 2008;15(4):589–603.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Amtul Z, Wang L, Westaway D, Rozmahel RF. Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience. 2010;169(2):781–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhao L, Yao J, Mao Z, Chen S, Wang Y, Brinton RD. 17β-Estradiol regulates insulin-degrading enzyme expression via an ERβ/PI3-K pathway in hippocampus: relevance to Alzheimer’s prevention. Neurobiol Aging. 2011;32(11):1949–63.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Levin-Allerhand JA, Lominska CE, Wang J, Smith JD. 17Alpha-estradiol and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice. J Alzheimers Dis. 2002;4(6):449–57.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Carroll JC, Pike CJ. Selective estrogen receptor modulators differentially regulate Alzheimer-like changes in female 3xTg-AD mice. Endocrinology. 2008;149(5):2607–11.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, et al. Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci. 2007;27(48):13357–65.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Carroll JC, Rosario ER, Villamagna A, Pike CJ. Continuous and cyclic progesterone differentially interact with estradiol in the regulation of Alzheimer-like pathology in female 3xTransgenic-Alzheimer’s disease mice. Endocrinology. 2010;151(6):2713–22.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Xu H, Wang R, Zhang YW, Zhang X. Estrogen, beta-amyloid metabolism/trafficking, and Alzheimer’s disease. Ann N Y Acad Sci. 2006;1089:324–42.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zheng H, Xu H, Uljon SN, Gross R, Hardy K, Gaynor J, et al. Modulation of A(beta) peptides by estrogen in mouse models. J Neurochem. 2002;80(1):191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. Perimenopause as a neurological transition state. Nat Rev Endocrinol. 2015;11(7):393–405.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Weber MT, Rubin LH, Maki PM. Cognition in perimenopause: the effect of transition stage. Menopause. 2013;20(5):511–7.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Zandi PP, Carlson MC, Plassman BL, Welsh-Bohmer KA, Mayer LS, Steffens DC, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA. 2002;288(17):2123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Espeland MA, Rapp SR, Shumaker SA, Brunner R, Manson JE, Sherwin BB, et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291(24):2959–68.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291(24):2947–58.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003;289(20):2651–62.CrossRefGoogle Scholar
  82. 82.
    Henderson VW. Estrogen-containing hormone therapy and Alzheimer’s disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience. 2006;138(3):1031–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kantarci K, Lowe VJ, Lesnick TG, Tosakulwong N, Bailey KR, Fields JA, et al. Early postmenopausal transdermal 17β-estradiol therapy and amyloid-β deposition. J Alzheimers Dis. 2016;53(2):547–56.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gleason CE, Dowling NM, Wharton W, Manson JE, Miller VM, Atwood CS, et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-cognitive and affective study. PLoS Med. 2015;12(6):e1001833; discussion ePubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Henderson VW, St John JA, Hodis HN, McCleary CA, Stanczyk FZ, Shoupe D, et al. Cognitive effects of estradiol after menopause: a randomized trial of the timing hypothesis. Neurology. 2016;87(7):699–708.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Espeland MA, Shumaker SA, Leng I, Manson JE, Brown CM, LeBlanc ES, et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern Med. 2013;173(15):1429–36.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Imtiaz B, Tuppurainen M, Rikkonen T, Kivipelto M, Soininen H, Kröger H, et al. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Neurology. 2017;88(11):1062–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–12.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sando SB, Melquist S, Cannon A, Hutton M, Sletvold O, Saltvedt I, et al. Risk-reducing effect of education in Alzheimer’s disease. Int J Geriatr Psychiatry. 2008;23(11):1156–62.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Roe CM, Xiong C, Miller JP, Morris JC. Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology. 2007;68(3):223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Stern Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(3 Suppl 2):S69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    McDowell I, Xi G, Lindsay J, Tierney M. Mapping the connections between education and dementia. J Clin Exp Neuropsychol. 2007;29(2):127–41.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Tom SE, Hubbard RA, Crane PK, Haneuse SJ, Bowen J, McCormick WC, et al. Characterization of dementia and Alzheimer’s disease in an older population: updated incidence and life expectancy with and without dementia. Am J Public Health. 2015;105(2):408–13.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rocca WA, Mielke MM, Vemuri P, Miller VM. Sex and gender differences in the causes of dementia: a narrative review. Maturitas. 2014;79(2):196–201.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6(2):109–20.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med. 2015;47:e149.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jayaraman A, Pike CJ. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr Diab Rep. 2014;14(4):476.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004;63(4):658–63.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Cigolle CT, Lee PG, Langa KM, Lee YY, Tian Z, Blaum CS. Geriatric conditions develop in middle-aged adults with diabetes. J Gen Intern Med. 2011;26(3):272–9.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057–64.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes. 2013;62(8):2629–34.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Christensen A, Pike CJ. Menopause, obesity and inflammation: interactive risk factors for Alzheimer’s disease. Front Aging Neurosci. 2015;7:130.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab. 2003;88(6):2404–11.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004;63(7):1187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010;67(6):505–12.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gilsanz P, Mayeda ER, Glymour MM, Quesenberry CP, Mungas DM, DeCarli C, et al. Female sex, early-onset hypertension, and risk of dementia. Neurology. 2017;89(18):1886–93.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF. Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry. 2013;202(5):329–35.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Richard E, Reitz C, Honig LH, Schupf N, Tang MX, Manly JJ, et al. Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 2013;70(3):374–82.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB. Sex and depression in the National Comorbidity Survey. I: lifetime prevalence, chronicity and recurrence. J Affect Disord. 1993;29(2–3):85–96.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Steiner M, Dunn E, Born L. Hormones and mood: from menarche to menopause and beyond. J Affect Disord. 2003;74(1):67–83.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Piccinelli M, Wilkinson G. Gender differences in depression. Critical review. Br J Psychiatry. 2000;177:486–92.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Goveas JS, Espeland MA, Woods NF, Wassertheil-Smoller S, Kotchen JM. Depressive symptoms and incidence of mild cognitive impairment and probable dementia in elderly women: the Women’s Health Initiative Memory Study. J Am Geriatr Soc. 2011;59(1):57–66.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Yaffe K, Blackwell T, Gore R, Sands L, Reus V, Browner WS. Depressive symptoms and cognitive decline in nondemented elderly women: a prospective study. Arch Gen Psychiatry. 1999;56(5):425–30.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Dal Forno G, Palermo MT, Donohue JE, Karagiozis H, Zonderman AB, Kawas CH. Depressive symptoms, sex, and risk for Alzheimer’s disease. Ann Neurol. 2005;57(3):381–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Karlsson IK, Bennet AM, Ploner A, Andersson TM, Reynolds CA, Gatz M, et al. Apolipoprotein E ε4 genotype and the temporal relationship between depression and dementia. Neurobiol Aging. 2015;36(4):1751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sheline YI, West T, Yarasheski K, Swarm R, Jasielec MS, Fisher JR, et al. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Sci Transl Med. 2014;6(236):236re4.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Osorio RS, Pirraglia E, Agüera-Ortiz LF, During EH, Sacks H, Ayappa I, et al. Greater risk of Alzheimer’s disease in older adults with insomnia. J Am Geriatr Soc. 2011;59(3):559–62.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Phillips BA, Collop NA, Drake C, Consens F, Vgontzas AN, Weaver TE. Sleep disorders and medical conditions in women. Proceedings of the Women & Sleep Workshop, National Sleep Foundation, Washington, DC, March 5–6, 2007. J Womens Health (Larchmt). 2008;17(7):1191–9.CrossRefGoogle Scholar
  119. 119.
    Scullin MK. Do older adults need sleep? A review of neuroimaging, sleep, and aging studies. Curr Sleep Med Rep. 2017;3(3):204–14.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Canevelli M, Quarata F, Remiddi F, Lucchini F, Lacorte E, Vanacore N, et al. Sex and gender differences in the treatment of Alzheimer’s disease: a systematic review of randomized controlled trials. Pharmacol Res. 2017;115:218–23.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kasper JD, Freedman VA, Spillman BC. Disability and care needs of older Americans by dementia status: An analysis of the 2011 national health and aging trends study. Washington, DC: U.S. Department of Health and Human Services; 2014.Google Scholar
  122. 122.
    Bouldin ED, Andresen E. Caregiving across the United States: caregivers of persons with Alzheimer’s disease or dementia in 8 states and the District of Columbia. 2009.Google Scholar
  123. 123.
    Friedman EM, Shih RA, Langa KM, Hurd MD. US prevalence and predictors of informal caregiving for dementia. Health Aff (Millwood). 2015;34(10):1637–41.CrossRefGoogle Scholar
  124. 124.
    Wolff JL, Spillman BC, Freedman VA, Kasper JD. A national profile of family and unpaid caregivers who assist older adults with health care activities. JAMA Intern Med. 2016;176(3):372–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hurd MD, Martorell P, Langa KM. Monetary costs of dementia in the United States. N Engl J Med. 2013;369(5):489–90.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kasper JD, Freedman VA, Spillman BC, Wolff JL. The disproportionate impact of dementia on family and unpaid caregiving to older adults. Health Aff (Millwood). 2015;34(10):1642–9.CrossRefGoogle Scholar
  127. 127.
    AARP NAfCa. Caregiving in the U.S.: unpublished data analyzed under contract for the Alzheimer’s Association. 2009.Google Scholar
  128. 128.
    Association As. 2014 Alzheimer’s disease facts and figures. Spec Rep Women Alzheimer’s Dis. 2014;Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Brigham and Women’s HospitalBostonUSA

Personalised recommendations