Advertisement

On the Quantification of Habitability: Current Approaches

  • Rolando Cárdenas
  • Rosmery Nodarse-Zulueta
  • Noel Perez
  • Daile Avila-Alonso
  • Osmel Martin
Conference paper

Abstract

In this chapter, we outline general ideas to quantify habitability, starting with a general abiogenesis–biogenesis conceptual model. We connect this model with the approach of the astrobiological school of quantitative habitability, specifically with quantitative habitability theory, to devise habitability indexes. We present two indexes devised by us: the Aquatic Primary Habitability for photosynthesis-based ecosystems, and the Chemosynthetic Habitability Index for chemoautotrophy-based ones. As a case study, we present the application of the last one to hydrothermal vents. It is also mentioned the possibility of embedding parameters such as net primary productivity, calculated using habitability indexes, into greater ecological models with several trophic models, making a clear connection between the astrobiological and ecological approaches of quantitative habitability.

Keywords

Abiogenesis–biogenesis model Quantitative habitability theory Habitability index 

References

  1. 1.
    Shock E, Holland M (2007) Quantitative habitability. Astrobiology 7:839CrossRefGoogle Scholar
  2. 2.
    Schulze-Makuch D, Irwin L (2008) Life in the Universe. Springer-Verlag, Berlin Heidelberg, GermanyCrossRefGoogle Scholar
  3. 3.
    Raven J, Cockell C, Kaltenegger L (2011) Energy sources for, and detectability of, life on extrasolar planets. Capítulo del libro genesis-in the beginning: precursors of life, chemical models and early biological evolution. Springer, AmsterdamGoogle Scholar
  4. 4.
    Loeb A (2014) The habitable epoch of the early universe. Int J Astrobiol 13:337CrossRefGoogle Scholar
  5. 5.
    Méndez A (2010) Evolution of the global terrestrial habitability during the last century. Proceedings of sixth astrobiology science conference, Houston, TX, USA, pp 26–29Google Scholar
  6. 6.
    Cardenas R, Pérez-Díaz N, Martínez-Frias J, Martín-González O (2014) On the habitability of aquaplanets. Challenges 5:284CrossRefGoogle Scholar
  7. 7.
    Álvarez-Salgueiro J (2015) Productividad primaria del fitoplancton en el golfo de Ana María, Cuba. B.Sc. Thesis in Physics. Supervisors: Dailé Avila-Alonso-Alonso & Rolando Cardenas. Consultant: Roberto González-de Zayas. Available at http://dspace.uclv.edu.cu:8089/
  8. 8.
    Fritz J, Neale P, Davis R, Pelloquin J (2008) Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages. Mar Ecol Prog Ser 365:1CrossRefGoogle Scholar
  9. 9.
    Karydis M, Ignatiades L, Moschopoulou N (1983) An index associated with nutrient eutrophication in the marine environment. Estuar Coast Shelf Sci 16:339CrossRefGoogle Scholar
  10. 10.
    Cardenas R, Pérez Díaz N, Avila-Alonso D, Nodarse-Zulueta R (2017) ¿Se originó la vida en el eón Hadeico? ¿De manera fotosintética o quimiosintética? Memorias de la VII Convención de Ciencias de la Tierra, Abril/2017, La Habana, Cuba. Available at http://www.cubacienciasdelatierra.com/es/general15
  11. 11.
    Nodarse-Zulueta R (2017) Diseño de un Indice de Habitabilidad Quimiosintética. B.Sc. Thesis. Supervisors: Rolando Cardenas and Noel Pérez Díaz. Consultant: Dailé Avila-Alonso. Available at http://dspace.uclv.edu.cu:8089/
  12. 12.
    Volk T (1987) Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am J Sci 287:763CrossRefGoogle Scholar
  13. 13.
    Pérez N, Cardenas R, Martin O, Leiva-Mora M (2013) The potential for photosynthesis in hydrothermal vents: a new avenue for life in the Universe? Astrophys Space Sci 346:327–331CrossRefGoogle Scholar
  14. 14.
    Das A, Singh T, LokaBharathi P, Dhakephalkar P, Mallik S, Kshirsagar P, Khadge N, Nagender Nath B, Bhattacharya S, Kumar Dagar A, Kaur P, Ray D, Shukla A, Fernandes C, Fernandes S, Thomas T, Mamatha S, Shashikant Mourya B, Murti Meena R (2017) Astrobiological implications of dim light phototrophy in deep-sea red clays. Life Sci Space Res 12:39–50CrossRefGoogle Scholar
  15. 15.
    Amemiya T, Enomoto T, Rossberg A, Yamamoto T, Inamori Y, Itoh K (2007) Stability and dynamical behaviour in a real lake model and implications for regime shifts in real lakes. Ecol Model 206:54CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rolando Cárdenas
    • 1
  • Rosmery Nodarse-Zulueta
    • 1
  • Noel Perez
    • 1
  • Daile Avila-Alonso
    • 1
  • Osmel Martin
    • 1
  1. 1.Planetary Science LaboratoryUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba

Personalised recommendations