Linear Periodic Discriminant Analysis of Multidimensional Signals

  • Dounia MuldersEmail author
  • Cyril de Bodt
  • Nicolas Lejeune
  • André Mouraux
  • Michel Verleysen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11306)


Extracting relevant information from noisy multidimensional signals has tremendous impacts in numerous applications, ranging from audio separation to electrophysiological recording analysis. Linear filters are often considered to reconstruct and interpret the latent sources generating the data. Known properties of the sources can be used to guide their separation. In neuroscience, the cortical processes underlying perception in different modalities (visual, auditory, ...) is often studied using electroencephalography (EEG) during periodic stimulation, eliciting periodic activity in neural sources, some of which being specific to the considered modality. Whereas current approaches extract sources either periodic or discriminative, none of them accounts for both aspects at once. This paper proposes several methods extracting periodic sources specific between two classes, hence termed as Linear Periodic Discriminant Analysis methods. They are validated on synthetic data and EEG recordings of subjects to whom periodic stimulation from two modalities is applied. The methods highlight modality-specific periodic responses.


Linear filtering Specific periodic components Generalized Rayleigh Quotient Source separation Steady-states EEG 



DM and CdB are Research Fellows of the FNRS. The authors gratefully thank Prof. Christian Jutten for insightful discussions.


  1. 1.
    Bedard, C., Kroeger, H., Destexhe, A.: Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. rev. let. 97(11), 118102 (2006)Google Scholar
  2. 2.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  3. 3.
    Colon, E., Legrain, V., Mouraux, A.: Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Clin. Neurophysiol. 42(5), 315–323 (2012)CrossRefGoogle Scholar
  4. 4.
    De Keyser, R., van den Broeke, E.N., Courtin, A., Dufour, A., Mouraux, A.: Event-related brain potentials elicited by high-speed cooling of the skin: a robust and non-painful method to assess the spinothalamic system in humans. Clin. Neurophysiol. 129(5), 1011–1019 (2018)CrossRefGoogle Scholar
  5. 5.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)Google Scholar
  6. 6.
    Hyvärinen, A.: Independent component analysis: recent advances. Phil. Trans. R. Soc. A 371(1984), 20110534 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)CrossRefGoogle Scholar
  8. 8.
    Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)CrossRefGoogle Scholar
  9. 9.
    Krzanowski, W.: Principles of Multivariate Analysis, vol. 23. OUP Oxford, Oxford (2000)Google Scholar
  10. 10.
    Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2014)Google Scholar
  11. 11.
    Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE TBME 58(2), 355–362 (2011)Google Scholar
  12. 12.
    Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Advances in Neural Information Processing Systems, pp. 145–151 (1996)Google Scholar
  13. 13.
    Mouraux, A., Iannetti, G.D., Colon, E., Nozaradan, S., Legrain, V., Plaghki, L.: Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J. Neurosci. 31(16), 6079–6087 (2011)CrossRefGoogle Scholar
  14. 14.
    Mulders, D., de Bodt, C., Lejeune, N., Mouraux, A., Verleysen, M.: Spatial filtering of EEG signals to identify periodic brain activity patterns. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M.D., Ward, D. (eds.) LVA/ICA 2018. LNCS, vol. 10891, pp. 524–533. Springer, Cham (2018). Scholar
  15. 15.
    Nakanishi, M., Wang, Y., Wang, Y.T., Mitsukura, Y., Jung, T.P.: A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 24(06), 1450019 (2014)CrossRefGoogle Scholar
  16. 16.
    Samadi, S., Amini, L., Cosandier-Rimélé, D., Soltanian-Zadeh, H., Jutten, C.: Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG. IEEE Trans. Biomed. Eng. 60(7), 1983–1992 (2013)CrossRefGoogle Scholar
  17. 17.
    Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8), 1935–1940 (2008)CrossRefGoogle Scholar
  18. 18.
    Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace decomposition. IEEE Trans. Signal Process. 58(4), 2363–2374 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Saul, L.K., Allen, J.B.: Periodic component analysis: an eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing Systems, pp. 807–813 (2001)Google Scholar
  20. 20.
    Vincent, E., Bertin, N., Gribonval, R., Bimbot, F.: From blind to guided audio source separation: how models and side information can improve the separation of sound. IEEE Signal Process. Mag. 31(3), 107–115 (2014)CrossRefGoogle Scholar
  21. 21.
    Wu, W., Chen, Z., Gao, S., Brown, E.N.: A probabilistic framework for learning robust common spatial patterns. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 4658–4661 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dounia Mulders
    • 1
    • 2
    Email author
  • Cyril de Bodt
    • 1
  • Nicolas Lejeune
    • 2
  • André Mouraux
    • 2
  • Michel Verleysen
    • 1
  1. 1.ICTEAM InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.IONS InstituteUniversité catholique de LouvainWoluwe-Saint-LambertBelgium

Personalised recommendations