Advertisement

Estimation of 3-D Pose with 2-D Vision Based on Shape Matching Method

  • Bin Chen
  • Jianhua SuEmail author
  • Kun Lv
  • Donge Xue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11306)

Abstract

Pose estimation is an important step in the grasping of workpieces. However, most previous works aim to use the 3D vision system to locate the 3D pose of the object. This paper develops a pose estimation of 3D object with 2D vision system. The proposed method includes two steps: (a) a hierarchy model of 2D views of the object is firstly constructed off-line; (b) the pose of object is then estimated by measuring the similarity of the model and target image. The proposed method is inherently robust against noise and illumination changes, and also efficient in real applications.

Keywords

3D object recognition Shape context Similarity measure 

References

  1. 1.
    Pretto, A., Tonello, S., Menegatti, E.: Flexible 3D localization of planar objects for industrial bin-picking with monocamera vision system. In: 9th IEEE International Conference on Automation Science and Engineering (CASE), Madison, pp. 168–175. IEEE Press (2013)Google Scholar
  2. 2.
    Hinterstoisser, S., et al.: Gradient response maps for real-time detection of textureless objects. In: 32nd IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 876–888. IEEE Press (2012)Google Scholar
  3. 3.
    Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37331-2_42CrossRefGoogle Scholar
  4. 4.
    Rios-Cabrera, R., Tuytelaars, T.: Discriminatively trained templates for 3D object detection: a real time scalable approach. In: 14th IEEE International Conference on Computer Vision, Sydney, pp. 2048–2055. IEEE Press (2013)Google Scholar
  5. 5.
    Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10605-2_35CrossRefGoogle Scholar
  6. 6.
    Bonde, U., Badrinarayanan, V., Cipolla, R.: Robust instance recognition in presence of occlusion and clutter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 520–535. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10605-2_34CrossRefGoogle Scholar
  7. 7.
    Borgefors, G.: Hierarchical chamfer matching: a parametric edge matching algorithm. In: 8th IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 849–865. IEEE Press (1988)Google Scholar
  8. 8.
    Steger, C.: Similarity measures for occlusion, clutter, and illumination invariant object recognition. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 148–154. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45404-7_20CrossRefzbMATHGoogle Scholar
  9. 9.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. In: 22nd IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 509–522. IEEE Press (2002)Google Scholar
  10. 10.
    Ulrich, M., Wiedemann, C., Steger, C.: Combining scale-space and similarity-based aspect graphs for fast 3D object recognition. In: 32nd IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 1902–1914. IEEE Press (2012)Google Scholar
  11. 11.
    Lowe, D.G.: Three-dimensional object recognition from single two dimensional images. Artif. Intell. 31, 355–395 (1987)CrossRefGoogle Scholar
  12. 12.
    Lowe, D.G.: Fitting parametrized 3-D models to images. In: 11th IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 441–450. IEEE Press (1991)Google Scholar
  13. 13.
    Costa, M.S., Shapiro, L.G.: 3D object recognition and pose with relational indexing. Comput. Vis. Image Underst. 79, 364–407 (2000)CrossRefGoogle Scholar
  14. 14.
    Wiedemann, C., Ulrich, M., Steger, C.: Recognition and tracking of 3D objects. In: Symposium on Pattern Recognition, vol. 5096, pp. 132–141 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Management and Control for Complex Systems, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.China International Engineering Consulting CorporationBeijingChina
  4. 4.Jiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations