Advertisement

Fuzzy Differential Equations for Modeling and Control of Fuzzy Systems

  • Raheleh JafariEmail author
  • Sina Razvarz
  • Alexander Gegov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)

Abstract

A survey of the methodologies associated with the modeling and control of uncertain nonlinear systems has been given due importance in this paper. The basic criteria that highlights the work is relied on the various patterns of techniques incorporated for the solutions of fuzzy differential equations (FDEs) that corresponds to fuzzy controllability subject. The solutions which are generated by these equations are considered to be the controllers. Currently, numerical techniques have come out as superior techniques in order to solve these types of problems. The implementation of neural networks technique is contributed in the complex way of dealing the appropriate solutions of the fuzzy systems.

Keywords

Modeling Fuzzy differential equation Fuzzy system 

References

  1. 1.
    Jafari, R., Razvarz, S.: Solution of fuzzy differential equations using fuzzy Sumudu transforms. In: IEEE International Conference on Innovations in Intelligent Systems and Applications, vol. 1, pp. 84–89 (2017)Google Scholar
  2. 2.
    Jafari, R., Yu, W.: Uncertainty nonlinear systems modeling with fuzzy equations. In: Proceedings of the 16th IEEE International Conference on Information Reuse and Integration, San Francisco, Calif, USA, 1 August, pp. 182–188 (2015)Google Scholar
  3. 3.
    Jafari, R., Yu, W.: Uncertainty nonlinear systems control with fuzzy equations. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 2885–2890 (2015)Google Scholar
  4. 4.
    Jafari, R., Yu, W., Li, X.: Numerical solution of fuzzy equations with Z-numbers using neural networks. Intell. Autom. Soft Comput. 1, 1–7 (2017)Google Scholar
  5. 5.
    Jafari, R., Yu, W., Li, X., Razvarz, S.: Numerical solution of fuzzy differential equations with Z-numbers using Bernstein neural networks. Int. J. Comput. Intell. Syst. 10, 1226–1237 (2017)CrossRefGoogle Scholar
  6. 6.
    Razvarz, S., Jafari, R., Granmo, O.Ch., Gegov, A.: Solution of dual fuzzy equations using a new iterative method. In: Asian Conference on Intelligent Information and Database Systems, vol. 1, pp. 245–255 (2018)CrossRefGoogle Scholar
  7. 7.
    Razvarz, S., Jafari, R., Yu, W.: Numerical solution of fuzzy differential equations with Z-numbers using fuzzy Sumudu transforms. Adv. Sci. Technol. Eng. Syst. J. (ASTESJ) 3, 66–75 (2018)CrossRefGoogle Scholar
  8. 8.
    Razvarz, S., Jafari, R., Yu, W., Khalili, A.: PSO and NN modeling for photocatalytic removal of pollution in wastewater. In: 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) Electrical Engineering, vol. 1, pp. 1–6 (2017)Google Scholar
  9. 9.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 15, 116–132 (1985)CrossRefGoogle Scholar
  10. 10.
    Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. IEE Proc. Control Theory Appl. 121(12), 1585–1588 (1976)Google Scholar
  11. 11.
    Khastan, A., Ivaz, K.: Numerical solution of fuzzy differential equations by Nyström method. Chaos, Solitons Fractals 41, 859–868 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Palligkinis, S.C., Papageorgiou, G., Famelis, I.T.: Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 97–105 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ahmadi, M.B., Kiani, N.A., Mikaeilvand, N.: Laplace transform formula on fuzzy nth-order derivative and its application in fuzzy ordinary differential equations. Soft. Comput. 18, 2461–2469 (2014)CrossRefGoogle Scholar
  14. 14.
    Gibson, J.S.: An analysis of optimal modal regulation: convergence and stability. SIAM J. Control Optim. 19, 686–707 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kröner, A., Kunisch, K.: A minimum effort optimal control problem for the wave equation. Comput. Optim. Appl. 57, 241–270 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Effati, S., Pakdaman, M.: Artificial neural network approach for solving fuzzy differential equations. Inform. Sci. 180, 1434–1457 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000)CrossRefGoogle Scholar
  18. 18.
    Yazdi, H.S., Pourreza, R.: Unsupervised adaptive neural-fuzzy inference system for solving differential equations. Appl. Soft Comput. 10, 267–275 (2010)CrossRefGoogle Scholar
  19. 19.
    Lee, H., Kang, I.S.: Neural algorithms for solving differential equations. J. Comput. Phys. 91, 110–131 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10, 195–201 (2000)CrossRefGoogle Scholar
  21. 21.
    Sukavanam, N., Panwar, V.: Computation of boundary control of controlled heat equation using artificial neural networks. Int. Commun. Heat Mass Transfer 30, 1137–1146 (2003)CrossRefGoogle Scholar
  22. 22.
    Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy differential equations by predictor-corrector method. Inform. Sci. 177, 1633–1647 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ma, M.A., Friedman, M., Kandel, A.: Numerical solutions of fuzzy differential equations. Fuzzy Sets Syst. 105, 133–138 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Román-Flores, H., Rojas-Medar, M.: Embedding of level-continuous fuzzy sets on Banach spaces. Inform. Sci. 144, 227–247 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kim, H., Sakthivel, R.: Numerical solution of hybrid fuzzy differential equations using improved predictor–corrector method. Commun. Nonlin. Sci. Numer. Simul. 17, 3788–3794 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Balooch Shahryari, M.R., Salahshour, S.: Improved predictor-corrector method for solving fuzzy differential equations under generalized differentiability. J. Fuzzy Set Valued Anal. 2012, 16 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Pirzada, U.M., Vakaskar, D.C.: Solution of fuzzy heat equations using Adomian decomposition method. Int. J. Adv. Appl. Math. Mech. 3, 87–91 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Paripour, M., Hajilou, E., Heidari, H.: Application of Adomian decomposition method to solve hybrid fuzzy differential equations. J. Taibah Univ. Sci. (2014). http://dx.doi.org/10.1016/j.jtusci.2014.06.002
  29. 29.
    Abdelrazec, A., Pelinovsky, D.: Convergence of the Adomian decomposition method for Initial-Value problems. Numer. Methods Partial Differ. Equ. 27, 749–766 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tapaswini, S., Chakraverty, S.: A new approach to fuzzy initial value problem by improved Euler method. Fuzzy Inf. Eng. 3, 293–312 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tapaswini, S., Chakraverty, S.: Euler-based new solution method for fuzzy initial value problems. Int. J. Artif. Intell. Soft. Comput. 4, 58–79 (2014)CrossRefGoogle Scholar
  32. 32.
    Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)CrossRefGoogle Scholar
  33. 33.
    Aarts, L.P., Van der Veer, P.: Neural network method for solving partial differential equations. Neural Process. Lett. 14, 261–271 (2001)CrossRefGoogle Scholar
  34. 34.
    Pletcher, R.H., Tannehill, J.C., Anderson, D.: Computational Fluid Mechanics and Heat Transfer. Taylor and Francis, Abingdon (1997)zbMATHGoogle Scholar
  35. 35.
    Razvarz, S., Jafari, R.: Experimental study of Al2O3 nanofluids on the thermal efficiency of curved heat pipe at different tilt angle. J. Nanomater. Article ID 1591247, 1–7 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Artificial Intelligence Research (CAIR)University of AgderGrimstadNorway
  2. 2.Departamento de Control AutomáticoCINVESTAV-IPN (National Polytechnic Institute)Mexico CityMexico
  3. 3.School of ComputingUniversity of PortsmouthPortsmouthUK

Personalised recommendations