Advertisement

Optimization of Jobs in GIS by Coloring of Fuzzy Temporal Graph

  • Alexander BozhenyukEmail author
  • Stanislav Belyakov
  • Janusz Kacprzyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)

Abstract

The article proposes to consider the optimization of works in GIS as a task of coloring a fuzzy graph. The concept of fuzzy chromatic set of the second type is introduced and discussed in this paper as invariant fuzzy temporal graph. Fuzzy temporal graph is a graph in which the degree of connectivity of the vertices is changed in discrete time. Fuzzy chromatic set of the second type determines the greatest reparability degree of vertices of temporal fuzzy graph, when each of them can be assigned a specified number of colors at any discrete time. The example of finding the chromatic set of the second type is considered too.

Keywords

Fuzzy temporal graph Invariant Fuzzy subgraph Graph coloring Fuzzy chromatic set Degree of reparability 

Notes

Acknowledgments

This work has been supported by the Ministry of Education and Science of the Russian Federation under Project “Methods and means of decision making on base of dynamic geographic information models” (Project part, State task 2.918.2017), and the Russian Foundation for Basic Research, Project № 18-01-00023a.

References

  1. 1.
    Malczewski, J.: GIS and Multicriteria Decision Analysis. Wiley, New York (1999)Google Scholar
  2. 2.
    Longley, P., Goodchild, M., Maguire, D., Rhind, D.: Geographic Information Systems and Science. Wiley, New York (2001)Google Scholar
  3. 3.
    Goodchild, M.: Modelling error in objects and fields. In: Goodchild, M.F., Gopal, S. (eds.) Accuracy of Spatial Databases, pp. 107–113. Taylor & Francis, Basingstoke (1989)Google Scholar
  4. 4.
    Zhang, J., Goodchild, M.: Uncertainty in Geographical Information. Taylor & Francis, New York (2002)Google Scholar
  5. 5.
    Belyakov, S., Belyakova, M., Bozhenyuk, A., Rozenberg, I.: Transformation of elements of geoinformation models in the synthesis of solutions. Adv. Intell. Syst. Comput. 679, 526–535 (2018).  https://doi.org/10.1007/978-3-319-68321-8_55CrossRefGoogle Scholar
  6. 6.
    Bershtein, L., Bozhenyuk, A.: The using of temporal graphs as the models of complicity systems. Izvestiya UFY. Technicheskie nayuki. TTI UFY, Taganrog 4(105), 198–203 (2010)Google Scholar
  7. 7.
    Bershtein, L., Bozhenyuk, A., Rozenberg, I.: Definition method of strong connectivity of fuzzy temporal graphs. Vestnik RGUPS, Rostov-on-Don 3(43), 15–20 (2011)Google Scholar
  8. 8.
    Bozhenyuk, A., Belyakov, S., Rozenberg, I.: Coloring method of fuzzy temporal graph with the greatest separation degree. Adv. Intell. Syst. Comput. 450, 331–338 (2016).  https://doi.org/10.1007/978-3-319-33609-1_30CrossRefGoogle Scholar
  9. 9.
    Monderson, J., Nair, P.: Fuzzy Graphs and Fuzzy Hypergraphs. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Bershtein, L., Bozhenyuk, A., Rozenberg, I.: Fuzzy coloring of fuzzy hypergraph. Adv. Soft Comput. 33, 703–711 (2006).  https://doi.org/10.1007/3-540-31182-3_65CrossRefGoogle Scholar
  11. 11.
    Bozhenyuk, A., Belyakov, S., Knyazeva, M., Rozenberg, I.: Searching method of fuzzy internally stable set as fuzzy temporal graph invariant. Commun. Comput. Inf. Sci. 583, 501–510 (2018).  https://doi.org/10.1007/978-3-319-91473-2_43CrossRefGoogle Scholar
  12. 12.
    Bershtein, L., Bozhenuk, A.: Maghout method for determination of fuzzy independent, dominating vertex sets and fuzzy graph kernels. Int. J. Gen. Syst. 1(30), 45–52 (2001).  https://doi.org/10.1080/03081070108960697CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Bozhenyuk
    • 1
    Email author
  • Stanislav Belyakov
    • 1
  • Janusz Kacprzyk
    • 2
  1. 1.Southern Federal UniversityTaganrogRussia
  2. 2.Systems Research Institute Polish Academy of SciencesWarsawPoland

Personalised recommendations