Advertisement

PSO Algorithm Applied to Enhance Power Quality of Multilevel Inverter

  • Yahya Naderi
  • Fahreddin Sadikoglu
  • Seyed Hossein Hosseini
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)

Abstract

In this paper, a multilevel inverters’ output voltage THD is the object of optimizationdu. Since the higher number of voltage levels in output of a multilevel leads to high quality output voltage and current, it is desired to have more levels in output, and it needs more switches to handle this issue. As the number of equations increase, it becomes complicated to find optimum switching angles that lead to least THD value, So particle swarm optimization method is used to find optimum switching angles in this paper. Lower THD will improve the power quality of output voltage, and it can be achieved by selected harmonic elimination method, that has been used to eliminate desired harmonics. The topology used in this paper is an optimized topology of multilevel inverter, cascaded H-bridge with unequal DC voltage sources. The novelty of this work is in its very low output THD and the optimized configuration calculations of the presented cascaded multilevel inverter.

Keywords

Multilevel inverters Selective harmonic elimination Particle swarm optimization (PSO) THD 

References

  1. 1.
    Hosseini, S.H., Varesi, K., Ardashir, J.F., Gandomi, A.A., Saeidabadi, S.: An attempt to improve output voltage quality of developed multi-level inverter topology by increasing the number of levels. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 26 November 2015, pp. 665–669. IEEE (2015)Google Scholar
  2. 2.
    Oskuee, M.R., Karimi, M., Naderi, Y., Ravadanegh, S.N., Hosseini, S.H.: A new multilevel voltage source inverter configuration with minimum number of circuit elements. J. Central S. Univ. 24(4), 912–920 (2017)CrossRefGoogle Scholar
  3. 3.
    Hosseini, S.H., Ravadanegh, S.N., Karimi, M., Naderi, Y., Oskuee, M.R.: A new scheme of symmetric multilevel inverter with reduced number of circuit devices. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 26 November 2015, pp. 1072–1078. IEEE (2015)Google Scholar
  4. 4.
    Tolbert, L.M., Peng, F.Z., Habetler, T.G.: Multilevel converter for large electric drives. IEEE Trans. Ind. Appl. 35(1), 36–44 (1999)CrossRefGoogle Scholar
  5. 5.
    Babaei, E.: A cascade multilevel converter topology with reduced number of switches. IEEE Trans. Power Electron. 23(6), 2657–2664 (2008)CrossRefGoogle Scholar
  6. 6.
    Banaei, M.R., Oskuee, M.R., Khounjahan, H.: Reconfiguration of semi-cascaded multilevel inverter to improve systems performance parameters. IET Power Electron. 7(5), 1106–1112 (2014)CrossRefGoogle Scholar
  7. 7.
    Cecati, C., Ciancetta, F., Siano, P.: A multilevel inverter for PV systems with fuzzy logic control. IEEE Trans. Ind. Electron. 57(12), 4115–4125 (2010)CrossRefGoogle Scholar
  8. 8.
    Saeedifard, M., Iravani, R., Pou, J.: Analysis and control of DC-capacitor-voltage-drift phenomenon of a passive front-end five-levelconverter. IEEE Trans. Ind. Electron. vol. 54, no. pp. 3255–3266 (2007)CrossRefGoogle Scholar
  9. 9.
    Kaviani, A.K., Fathi, S.H., Farokhnia, N., Ardakani, A.J.: PSO, an effective tool for harmonics elimination and optimization in multi-level inverters. In: Proceedings of 4th IEEE ICIEA, 25–27 May 2009, pp. 2902–2907 (2009)Google Scholar
  10. 10.
    Yousefpoor, N., Fathi, S.H., Farokhnia, N., Sadeghi, S.H.: Application of OHSW technique in cascaded multi-level inverter with adjustable DC sources. In: Proceedings of IEEE International Conference on EPECS, pp. 1–6 (2009)Google Scholar
  11. 11.
    Taghizadeh, H., Hagh, M.T.: Harmonic elimination of cascade multilevel inverters with non-equal DC sources using particle swarm optimization. IEEE Trans. Ind. Electron. 57(11), 3678–3684 (2010)CrossRefGoogle Scholar
  12. 12.
    Naderi, Y., Hosseini, S.H., Mahari, A., Naderi, R.: A new strategy for harmonic minimization based on triple switching of multilevel converters. In: 2013 21st Iranian Conference on Electrical Engineering (ICEE), 14 May 2013, pp. 1–6 (2013)Google Scholar
  13. 13.
    Chiasson, I.E.E.E.J.N., Tolbert, L.M., McKenzie, K.J., Zhong, D.: Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants. IEEE Trans. Control Syst. Technol. Mar. 13(2), 216–223 (2005)CrossRefGoogle Scholar
  14. 14.
    Ozpineci, B., Tolbert, L.M., Chiasson, J.N.: Harmonic optimization of multilevel converters using genetic algorithms. IEEE Power Electron. Lett. 3(3), 92–95 (2005)CrossRefGoogle Scholar
  15. 15.
    Ebrahimi, J., Babaei, E., Gharehpetian, G.B.: A new topology of cascaded multilevel converters with reduced number of components for high-voltage applications. IEEE Trans. Power Electron. 26(11), 3109–3118 (2011)CrossRefGoogle Scholar
  16. 16.
    Zarnaghi, Y.N., Hosseini, S.H., Zadeh, S.G., Mohammadi-Ivatloo, B., Quintero, J.C., Guerrero, J.M.: Distributed Power Quality Improvement in Residential Microgrids. In: Eleco 2017 10th International IEEE Conference on Electrical and Electronics Engineering 2017. IEEE (2017)Google Scholar
  17. 17.
    Sadeghian, H., Athari, M.H., Wang, Z.: Optimized solar photovoltaic generation in a real local distribution network. In: 2017 IEEE 2017 Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5. IEEE, 23 April 2017Google Scholar
  18. 18.
    Nouri, T., Vosoughi, N., Hosseini, S.H., Sabahi, M.: A novel interleaved nonisolated ultrahigh-step-up DC–DC converter with ZVS performance. IEEE Trans. Ind. Electron. 64(5), 3650–3661 (2017)CrossRefGoogle Scholar
  19. 19.
    Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-30164-8CrossRefGoogle Scholar
  20. 20.
    Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on 2001 evolutionary computation, vol. 1, pp. 81–86. IEEE (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yahya Naderi
    • 1
  • Fahreddin Sadikoglu
    • 2
  • Seyed Hossein Hosseini
    • 1
    • 2
  1. 1.Faculty of Electrical and Computer EngineeringTabriz UniversityTabrizIran
  2. 2.Engineering FacultyNear East UniversityNicosia, North Cyprus, Mersin 10Turkey

Personalised recommendations