Decision Making in Investment Problem by Using Self-confidence Based Preference Relation

  • Aynur I. JabbarovaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)


In this paper we use interval-valued preference relations with self-confidence for investment problem. For calculating priority vectors of this preference relations linear programming are used. We use TOPSIS method the same problem for check results first method.


Linear programming Self-confidence levels Priority vector TOPSIS method 


  1. 1.
    Ok, E.A.: Utility representation of an incomplete preference relation. J. Econ. Theory 104, 429–449 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Nau, R.: The shape of incomplete preferences. Ann. Stat. 34, 2430–2448 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Insua, D.R.: On the foundations of decision making under partial information. Theory Decis. 33, 83–100 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rigotti, R., Shannon, C.: Uncertainty and risk in financial markets. Econometrica 73, 203–243 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Walley, P.: Statistical inferences based on a second-order possibility distribution. Int. J. Gen Syst 9, 337–383 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aliev, R.A.: Fuzzy Knowledge based Intelligent Robots. (Radio i Svyaz, Moscow) (in Russian) (1995)Google Scholar
  7. 7.
    Aliev, R.A., Huseynov, O.H.: A new approach to behavioral decision making with imperfect information. In: Proceedings of 6th International Conference on Soft Computing and, Computing with Words in System Analysis, Decision and Control, ICSCCW, pp. 227–237 (2011)Google Scholar
  8. 8.
    Liu, W., Dong, Y., Chiclana, F., Herrera-Viedma, E., Cabrerizo, F.J.: A new type of preference relations: fuzzy preference relations with self-confidence. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1677–1684 (2016)Google Scholar
  9. 9.
    Blin, J.M., Whinston, A.B.: Fuzzy sets and social choice. J. Cybern. 3(4), 17–22 (1973)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: A review of fuzzy sets aggregation connectives. Inf. Sci. 36, 85–121 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Herrera-Viedma, E., Herrera, F., Chiclana, F.: Multiperson decision-making based on multiplicative preference relations. Eur. J. Oper. Res. 129(2), 372–385 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted information. IEEE Trans. Syst. Man Cybern. A 27, 646–656 (1997)CrossRefGoogle Scholar
  13. 13.
    De Baets, B., De Meyer, H.: Transitivity frameworks for reciprocal relations: cycle transitivity versus FG-transitivity. Fuzzy Sets Syst. 152, 249–270 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dubois, D.: The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets Syst. 184, 3–28 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    McClellon, M.: Confidence models of incomplete preferences. Math. Soc. Sci. 83, 30–34 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chateauneuf, A., Faro, J.H.: On the confidence preferences model. Fuzzy Sets Syst. 188(1), 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Aliev, R.A.: Uncertain Computation-Based Decision Theory, p. 540. World Scientific Publishing Co Pte Ltd. (2017)Google Scholar
  18. 18.
    Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Izadikhah, M.: An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl. Math. Comput. 175, 1375–1384 (2006)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Azerbaijan State Economic UniversityBakuAzerbaijan

Personalised recommendations