Advertisement

Study of the Uncertainty Heterogeneous Phase Equilibria Areas in the Binary YbTe-SnTe Alloy System

  • A. N. Mammadov
  • Z. S. AlievEmail author
  • M. B. Babanly
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 896)

Abstract

Using the Multipurpose Genetic Algorithm (MGA) the liquidus and solidus regions, binodal and spinodal boundaries of the solid solutions in the system YbTe-SnTe are optimized. The analysis correctly shows that the liquidus and solidus regions in the YbTe-SnTe system cannot be described within the framework of the ideal model of solutions. The use of functions, including the partial molar excess free Gibbs energies of all components, allowed for adequately taking into account deviations from the ideal model of the properties of equilibrium liquid and solid solutions. The analytical relationships between the variables and the phase transition parameters allowed us to estimate the sensitivity of the input data. It is established that the coordinates of the liquidus and solidus curves are insensitive to the melting enthalpy. At the same time, a high sensitivity of the liquidus and solidus coordinates to melting points of the YbTe and SnTe was observed. It was wound that, when melting point changes 10 K, the uncertainty areas for the liquidus and solidus vary in a wide range.

Keywords

Multipurpose genetic algorithm, uncertainty area, binary alloys system Ytterbium telluride Tin telluride 

Notes

Acknowledgments

This work was performed in the frame of a scientific program of the international laboratory between the Institute of Catalysis and Inorganic Chemistry of the National Academy of Sciences of Azerbaijan (Azerbaijan) and Centro de Fısica de Materiales at Donostia (Spain).

References

  1. 1.
    Kanatzidis, M.G.: The role of solid state chemistry in the discovery of new thermoelectric materials. Semicond. Semimet. 69, 51–98 (2001)CrossRefGoogle Scholar
  2. 2.
    Shevelkov, A.V.: Chemical aspects of thermoelectric materials engineering. Rus. Chem. Rev. 77, 1–19 (2008)CrossRefGoogle Scholar
  3. 3.
    Babanly, M.B., Chulkov, E.V., Aliev, Z.S., Shevelkov, A.V., Amiraslanov, I.R.: Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem. 62(13), 1703–1730 (2017)CrossRefGoogle Scholar
  4. 4.
    Eremeev, S.V., Landolt, G., Menshchikova, T.V., Slomski, B., Koroteev, Y.M., Aliev, Z.S., Babanly, M.B., Henk, J., Ernst, A., Patthey, L., Eich, A., Khajetoorians, A.A., Hagemeister, J., Pietzsch, O., Wiebe, J., Wiesendanger, R., Echenique, P.M., Tsirkin, S.S., Amiraslanov, I.R., Dil, J.H., Chulkov, E.V.: Atom-specifik spin mapping and buried topological states in a homologous series of topolifical insulators. Nat. Commun. 3, 635 (2012)CrossRefGoogle Scholar
  5. 5.
    Franz, M.: Topological insulators: starting a new family. Nat. Mater. 9, 536–537 (2010)CrossRefGoogle Scholar
  6. 6.
    Preuss, M., Wessing, S., Rudolph, G., Sadowski. G.: Solving phase equilibrium problems by means of avoidance-based multiobjectivization. In: Springer Handbook of Computational Intelligence, pp. 1159–1169 (2015). Part E.58, Evol. Comput.CrossRefGoogle Scholar
  7. 7.
    Stan, M., Reardon, B.J.: A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams. CALPHAD 27, 319–323 (2003)CrossRefGoogle Scholar
  8. 8.
    Duong, T.C., Hackenberg, R.E., Landa, A., Honarmandi, A., Talapatra, A.: Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis. CALPHAD 55, 219–230 (2016)CrossRefGoogle Scholar
  9. 9.
    Aliev, Z.S., Ibadova, G.I., Tedenac, J.C., Babanly, M.B.: Study of the YbTe–SnTe–Sb2Te3 quasi-ternary system. J. Alloys Compd. 602, 248–254 (2014)CrossRefGoogle Scholar
  10. 10.
    Aliev, Z.S., Amiraslanov, I.R., Record, M.C., Tedenac, J.C., Babanly, M.B.: The YbTe-SnTe-Bi2Te3 system. J. Alloys Compd. 750, 887–894 (2018)CrossRefGoogle Scholar
  11. 11.
    Ibadova, G.I., Imamalieva, S.Z., Babanly, M.B.: Thermodynamic properties of solid solutions in the SnTe–YbTe system. Vestn. Bakinsk. Gos. Univ., Ser. Fiz.-Mat. Nauk 7–11 (2013)Google Scholar
  12. 12.
    Gamri, H., Djaballah, Y., Belgacem-Bouzida, A.: Thermodynamic modeling of the Eu-Te and Te-Ybsystems. J. Alloys Compd. 653, 121–128 (2015)CrossRefGoogle Scholar
  13. 13.
    Stolen, S., Grande, T.: Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects. Wiley, Hoboken (2004)Google Scholar
  14. 14.
    Mamedov, A.N., Tagiev, E.R., Mashadiyeva, L.F., Babanly, M.B.: Thermodynamic calculation and 3D modeling of the liquidus surface of the YbTe–Sb2Te3– Bi2Te3 system. Int. Res. J. Pure and Appl. Chem. 10(2), 1–5 (2016)CrossRefGoogle Scholar
  15. 15.
    Iorish, V.S., Yungman, V.S.: BazadannykhTermicheskiekonstantyveshchestv [Database. -Thermal Constants of Substances] (2006, in Russ.). www.chem.msu.ru/cgi-bin/tkv.pl
  16. 16.
    Mamedov, A.N., Tagiev, E.R., Aliev, Z.S., Babanly, M.B.: Phase boundaries of the (YbTe)x(PbTe)1–xand (YbTe)x(SnTe)1–xsolid solutions series. Russ. J. Inorg. Mater. 52(6), 543–545 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. N. Mammadov
    • 1
  • Z. S. Aliev
    • 2
    • 3
    Email author
  • M. B. Babanly
    • 1
  1. 1.M. Nagiyev Institute of Catalysis and Inorganic Chemistry of ANASBakuAzerbaijan
  2. 2.Azerbaijan State Oil and Industrial UniversityBakuAzerbaijan
  3. 3.Materials Science and Nanotechnology DepartmentNear East UniversityMersin 10, NicosiaTurkey

Personalised recommendations