Methods of Protection from Electromagnetic Radiation

  • Anatoly Belous
  • Vitali Saladukha
  • Siarhei Shvedau


The chapter covers investigations of methods and means for the protection of biological and technical objects from the influence of electromagnetic (EM) irradiations both of the natural and artificial (anthropogenic) origin. Detailed are the theoretical and experimental data on the physical mechanisms and consequences of influences of these irradiations on the biological objects. Under consideration are the various designs of the reflective and absorbent protective screens. Special attention is attributed to the peculiarities of formation of multilayer special purpose screens for protection from the static magnetic fields, low frequency (LF) and pulse electromagnetic irradiations, as well as quasi-stationary fields.


Static magnetic fields Pulse electromagnetic irradiations Quasi-stationary magnetic fields Photo-electronic multiplier «killer-satellite» Multilayer protective shields Absorbent materials 


  1. 1.
    N.N. Lebedeva, A.V. Suggimov, O.P. Sulimova, et al., Influence of the electromagnetic field of the mobile phone on the bioelectric activity of the human brain. Biomed. Radioelectron (4), 3–12 (1998)Google Scholar
  2. 2.
    National research programme in Finland «Biological effects of electromagnetic fields» // Summary of research projects - 1997. доступа:
  3. 3.
    N.V. Kolbun, T.V. Borbotko, A.A. Kazeka,, Simulation of electromagnetic radiation passing through liquid-containing nanostructured materials. Proc. of SPIE.- 2009.-Vol.7377-0AGoogle Scholar
  4. 4.
    I.S. Asaenok, V.S. Valenko, L.M. Lynkov, et al., Influence of the microwave irradiations on the cells of the human blood. Medelectronics-2002. Means of the medical electronics and new medical technologies 1 section international conference - Mn., 2002, pp. 68–70Google Scholar
  5. 5.
    L.D. Tapochka, M.G. Tapochka, A.F. Korolev, et al., Functional mechanisms of water biosensors of electromagnetic irradiation. Biomed. Radioelectron (3), 48–55 (2000)Google Scholar
  6. 6.
    L.M. Lynkov, T.V. Borbotko, A.V. Gusinsky, N.V. Kolbun, Influence of SPE-effect on the shilding properties of the absorbers of electromagnetic irradiation. Rep. BSUIR 1(2), 139–140 (2003)Google Scholar
  7. 7.
    L.M. Lynkov, T.V. Borbotko, B.A. Bogush, et al., Electromagnetic irradiations. Methods and means of protection. (Mn.: Bestprint, 2003), p. 398Google Scholar
  8. 8.
    T.V. Borbotko, Geometrically non-homogeneous liquid containing structural designs for absorbers of electromagnetic irradiation. MNTK «Modern Communications Means», Naroch, 2001: Materials of Conference – 2002, 2 (14)/2, pp. 117–119.Google Scholar
  9. 9.
    N.I. Sinitsyn, V.I. Petrosyan, V.A. Elkin, et al., A special role of the system «millimeter waves» - water medium in nature. Biomed. Radioelectron (1), 47–51 (1998)Google Scholar
  10. 10.
    L.M. Lynkov, T.V. Borbotko, Technogenic influences on biological objects. XVII international readings: theses of reports - Mn, 2002, pp. 90–92.Google Scholar
  11. 11.
    V.A. Terletsky, On Benefit and Harm of Irradiation for Life - М (USSR Publishers, 2001), p. 66Google Scholar
  12. 12.
    L.M. Lynkov, T.V. Borbotko, E.A. Senkovets, V.S. Valenko, Operation of the electromagnetic irradiation sources. Proc. Belarussian Eng. Acad (1 (13)/1), 156–158 (2002)Google Scholar
  13. 13.
    L.M. Lynkov, T.V. Borbotko, Wide band EMI energy shields for protection of biological objects. MNTK «Means of Medical Electronics and New Medical Technologies», Minsk, 2002: materials of conference – 2002, pp. 70–73.Google Scholar
  14. 14.
    G.T. Markov, A.F. Chaplin, Excitation of Electromagnetic Waves, 2nd edn. (М.: Radio and Communications, 1983), p. 296Google Scholar
  15. 15.
    S.I. Baskakov, Electrodynamics and Propagation of Radiowaves (М.: Higher School, 1992), p. 416Google Scholar
  16. 16.
    Y.K. Kovneristy, I.Y. Lazareva, A.A. Ravaev Materials, Absorbing Microwave-Irradiations (М.: Science, 1982), p. 164Google Scholar
  17. 17.
    V.V. Nikolsky, Theory of Electromagnetic Field (М. “Higher School”, 1964), p. 384Google Scholar
  18. 18.
    D.N. Shapiro, Fundamentals of the Electromagnetic Shielding Theory (L.: Energy, 1975), p. 112Google Scholar
  19. 19.
    V.M. Petrov, Dielectric Properties of Ferrielectrics in the Microwave Band // Ferrielectric Substances — (M.: Science, 1982), p. 164.Google Scholar
  20. 20.
    Pat. 5113190, USA, MPK HOI Q 17/00; G01B 15/00; G01R27/26; Н01Р 01/22. Device for reducing electromagnetic leakage radiation in the vicinity of radiation systems / Klein; Albert (Wetter, DF.); Laboratorium Prof. Dr Rudolf Berthold GmbH & Co. (Wildbad, DE). — № 521679, Appl. 10.05.1990, Published on 12.05.1992.Google Scholar
  21. 21.
    A. Kraftmaher, Microwave properties of the 1-D chiral and chiral-ferrite environments. Radiotech. Electron 48(2), 183–195 (2003)Google Scholar
  22. 22.
    Y.N. Kazantsev, M.V. Kostin, A. Kraftmaher, et al., Radioelectronics 1994. 39(10) (1652)Google Scholar
  23. 23.
    L.M. Lynkov, V.A. Borush, N.V. Kolbun, et al., New materials for the electromagnetic irradiation shields. Rep. BSUIR 2(5), 152–167 (2004)Google Scholar
  24. 24.
    E.M. Vinogradov, Electromagnetic Compatibility of Radioelectronic Means (М.: Higher School, 1986), p. 247Google Scholar
  25. 25.
    Pat. 6501016 USA, MPK Н 05К 009/00. Electromagnetic shielding system for printed circuit board / Sosnowski (Stroudsburg, PA); Laird Technologies Inc. — №563950, appl. 02.05.2000, publ. on 31.12.2002.Google Scholar
  26. 26.
    A.M. Safonova, N.H. Luneva, Current conducting paints for protection from EMI // Polycom — 2000: Bulletin of conference of IMMS NASB — Gomel, 2000, pp. 172—175.Google Scholar
  27. 27.
    L.M. Lynkov, V.A. Bogush, V.P. Glybin, et al., Flexible Structural Designs of the Electromagnetic Irradiation Shields (Mn.: BSUIR, 2000), p. 284Google Scholar
  28. 28.
    T.F. Mikhnyuk, Life Safety: Manual (Mn: DesignPRO, 1998), p. 239Google Scholar
  29. 29.
    Pat 6548196 USA, MPK H01L039/00. Wallpaper for shielding electromagnetic waves. / Ha Jae-Mok, Park Jin-U, Jang Jin-Ouk, Hahm Hyun-Sik (Korea), AD-Tech Co., Ltd. (Gunpo, Korea). — №819954, appl. 29.03.2002, publ. on 15.04.2003.Google Scholar
  30. 30.
    N.E. Kazantseva, N.G. Ryvkina, I.A. Chmutin, Prospective materials for absorption of EMW absorbers of microwave band. Radiotech. Electron 48(2), 196–209 (2003)Google Scholar
  31. 31.
    L.N. Zakharyev, A.A. Lemansky, Wave Dissipation by “Black” Bodies (M.: Soviet Radio, 1972), p. 126Google Scholar
  32. 32.
    Ruck G. Radar Cross-section Handbook New York.: Plenum Press, 1970.118 p.Google Scholar
  33. 33.
    K.N. Rozanov, Fundamental limitation for the width of the working band of the radio absorbing coatings. Radiotech. Electron 44(5), 526–530 (1999)Google Scholar
  34. 34.
    L.M. Brekhovskikh, Waves in the Layer Environments (M.: Publishers of AS of the USSR, 1957), p. 215Google Scholar
  35. 35.
    К. Ichinara, К. Ishino, Y. Shimizu, New microwave absorber using resistive cloth. International symposium on electromagnetic compatibility, Vol. 1, Tokyo, 1984, pp. 509–512.Google Scholar
  36. 36.
    Pat. 5537116 USA, MPK H 05K 09/00; Н01 017/00. Electromagnetic wave absorber / Ishino Ken; Hashimoto Yasuo; Kurihara Hiroshi; Hirai Yoshihito; TDK Corporation (Tokyo, JP). — № 420488, appl. 12.04.1995, publ. on 16.06.1996.Google Scholar
  37. 37.
    F. Jefferson, J. Linsdey, International symposium on digest antennas and propagation, Vol. 1, Philadelphia, 1986, pp. 125–129.Google Scholar
  38. 38.
    V. V. Dobrovensky, E. A. Zasovin, D. I. Mirovitsky, A. K. Cherepanov Composition Radio Absorbing Materials with the Layers from the Absorbent Diffraction Lattices Foreign Radioelectronics: Successes of Modern Radioelectronics 2000.2.61-66.Google Scholar
  39. 39.
    Pat. 5576710, USA, MPK Н 01 Q 17/00. Electromagnetic wave absorber / Broderick John F ; TessierNoel J ; Heafey Michael S.; Kocsik Michael T. Chomerics, Inc. (Wobum, MA).—№261386, appl. 16.06.1994, publ. on 40.11.1996.Google Scholar
  40. 40.
    Pat. 10145074 Japan, MPK Н 05 К9/00. Unwanted radiation absorber / lwanaga takahiro (Japan); Nec Corp. — №8294797, appl. 07.11.96, published on 29.05.98.Google Scholar
  41. 41.
    Pat. 5708435, USA, MPK Н 01 Q 17/00. Multilayer wave absorber / Kudo; Toshio (Osaka, JP); Tamura; Hideaki (Anda, JP); Noda; Kenichi (Nagoya, JP); Mitsubishi Cable Industries, Ltd., (Hyogo, JP); Ten Incorporated, (Aichi, JP). - №589945, appl. 23.01.1996. published on 13.01.1998.Google Scholar
  42. 42.
    Pat. 5443900, USA, MPK Н 05 К 09/00, В 32В 005/16. Electromagnetic wave absorber / Nagano Toshiaki. (Japan); Kansai Paint Co., Ltd. (Amagasaki, JP). —~ №115252, appl. 1.09.1993, published on 22.08.1995.Google Scholar
  43. 43.
    Y. Miazaki, K. Tanoe, Tapered and grated index tipe electromagnetic absorbers using inhomogeneous lossy dielectric layers. International symposium on electromagnetic compability, Vol. 2, Nagoya, 1989, pp. 504–508.Google Scholar
  44. 44.
    V.S. Pirumov, A.G. Alekseev, V.V. Aizikovich, New Radio Absorbent Materials and Coatings. Foreign Radioelectronics, 1994, №6, pp. 2–8.Google Scholar
  45. 45.
    Pat. 5721551, USA, MPK НО I Q 17/00. Apparatus for attenuating traveling wave reflections from surfaces / Tran; Hung Ban (Orange, CA); Rubien; Dennis M. (Redondo Beach, CA); Tulyathan; Pravit (Torrance, CA); Boeing North American, Inc. (Seal Beach, CA). — № 636009, appl. 22.04.1996, published on 24.02.1998.Google Scholar
  46. 46.
    Pat. 4164718, USA, MPK Н 01 Р 001/22. Electromagnetic power absorber / Iwasaki; Richard S. (Los Angeles, CA); California Institute of Technology (Pasadena, CA). — №834257, appl. 15.09.1977, published on 14.08.1979.Google Scholar
  47. 47.
    Pat. 4381510, USA, MPK Н 01 Q 17/00. Microwave absorber / Lloyd W. Wren (США); The Boeing Co. — №294046, appl. 18.08.81, published on 26.04.83.Google Scholar
  48. 48.
    Pat. 4973963, USA, MPK H01Q 017/00; Н01Р 001/22. Flat lattice for absorbing electromagnetic wave. Kurosawa; Moriyoshi (Tokyo, JP); Wakabayashi; Kazuo (Tokyo, JP); Miyata; Tsutomu (Tokyo, JP); Tokita, Hiroyuki (Tokyo, JP); Kitakoga; Yoshiyuki (Tokyo, JP); Mizuno; Yasuo (Tokyo, JP); Hikida; Masaki (Tokyo, JP); Hayashi; Tohimasa (Tokyo, JP) / Seiko Instilments inc. (JP). — № 273359, appl. 18.11.1988, published on 27.11.1990.Google Scholar
  49. 49.
    V.P. Cheparin, Gyromagnetic Currentless Electronics (M.: Moscow Energy Institute, 1997), p. 337Google Scholar
  50. 50.
    Pat. 5323160, USA, MPK Н 01 Q 17/00. Laminated electromagnetic wave absorber / Kim К. (Seoul); Korea Institute of Science and Technology (Seoul, KR). — №915052, appl. 16.07.1992, published on 21.06.1994.Google Scholar
  51. 51.
    Т. Tsuotaoka, М. Ueshima, T. Tokunaga, et al., Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composity materials. J. Appl. Phys. 78(6), 3983–3991 (1995)CrossRefGoogle Scholar
  52. 52.
    Pat. 5446459, USA, MPK H 01 Q 17/00. Wide band type electromagnetic wave absorber / Kyong Y. Kim, Wang S. Kim. Hyong J. Jung, Youn D. Ju (Seoul); Korea Institute of Science and Technology (Seoul, K.R). —№225754, appl. 1 1.04.1995, published on 29 08 1995.Google Scholar
  53. 53.
    Pat. 4003840, USA. MPK H 01 Q 17/00. Microwave absorber / Ken Ishino, Takashi Vatanabe, Yasuo Hashimoto. TDK Electronics Company, Limited/ — №576697, appl. 12.05.1975, published on 18.01.1977.Google Scholar
  54. 54.
    Pat. 5847316, USA MPK Н 05К 009/00. Electromagnetic shielding body and electromagnetic shielding structure utilizing same / Takada; Youichi (Chiba-Ken, JP) Kabushiki Kaisha Toshiba (Kawasaki, JP). — .№254585, appl. 06.06.1994, published on 08 12.1998.Google Scholar
  55. 55.
    Pat. 5925455, USA MPK В 32В 5/16; С 08 К 3/10. Electromagnetic power absorbing composite compressing a crystalline ferromagnetic layer and a dielectric layer, each having a specific thickness. / Bruzzone C.L., Hoyle C D 3M Innovative Properties Comp. —№08/906028, appl. 4.08.1997, published on 20.07.1999.Google Scholar
  56. 56.
    V.I. Ponomarenko, V.N. Berzhansky, D.I. Mirovitsky, Radioelectronics 34(8), 67–72 (1989)Google Scholar
  57. 57.
    Pat. 5422174 USA MPK 32 В 9/00. Electromagnetic wave shielding building material / Takamasa Shintani Yamatokooriyama, Masatake Nakamura, Sekisui Cemical Co. (Osaka, Japan). — №160290, appl. 13.08.1993, published on 6.06.1995.Google Scholar
  58. 58.
    Pat. 4173018, USA, MPK Н 01 Q 17/00. Antiradar means and teclmiques / Maynard H. Dawson, Leonard P. Suffredini, John R. O'Neal, Converse, William E. Whittaker Corp. (Los Angeles). — №250047, appl. 27.07.1967, published on 30.10.1979 гGoogle Scholar
  59. 59.
    Pat 5103231, MPK Н 01 Q 17/00. Electromagnetic wave absorber / Niioka Yoshio (Japan); Niioka Yoshio (Aichi, JP); Gottlieb Marvin (Hiland Park, IL). — № 588078, appl. 25.09.1990, published on 7.04.1992.Google Scholar
  60. 60.
    Pat. 5117229, MPK Н 01 Q 17/00. Electromagnetic wave absorber / Niioka Yoshio (Japan); Niioka Yoshio (Aichi, JP); Gottlieb Marvin (Hiland Park, IL). — №598915, appl. 15.10.1990, published on 26.05.1992Google Scholar
  61. 61.
    Pat. 6265466, USA, MPK G 21 F 001/10. Electromagnetic shielding composite comprising nanotubes / Glatkowski; Paul; Mack Patrick; Conroy; Jeffrey L.; Piche Joseph W.; Winsor Paul; Eikos, Inc. (Franklm, MA). — №250047, appl. 12.02.1999, published on 24.07.2001.Google Scholar
  62. 62.
    С.A. Grimes, С. Mungle, D. Kouzoudis, et al., The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett 319(5-6), 460 (2000)CrossRefGoogle Scholar
  63. 63.
    Y.K. Kalinin, T.N. Subbotina, I.I. Guktamyshev, et al., Schungite — Life Stone: Informational Bulletin (Tula State University, Research Institute of Advanced Medical Technologies, 2003), p. 28Google Scholar
  64. 64.
    Compliance Act as per Evaluation of the Radio-Shielding Properties of Schungite Wafer with the Size of 30 mm - 15 mm - 2 mm within the Frequency Band from 900 to 1800 MHz. Geology Institute of the KarNC of RAS. 16.03.2004.Google Scholar
  65. 65.
    T.I. Subbotina, I.I. Tuktamyshev, I. Sh Tuktamyshev, et al., Influence of low intensity short wave irradiation on the red bone marrow and blood cells with the Schungite mineral shielding. Bulletin. Adv. Med. Technol 10(1-2), 24–27 (2003)Google Scholar
  66. 66.
    Pat. 6001282, USA, MG1К Н 05 F 03/00. Electromagnetic shield / Kanase; Rick К., (Salem, OR); Electro K., Inc. (Los Angeles, CA). — № 312085, appl. 15.05.1999, published on 14.12.1999.Google Scholar
  67. 67.
    Pat. 494892.2, USA, MG1К Н 05 К 09/00. Electromagnetic shielding and absorptive materials / Varadan; Vijay K. (State College, PA); Varadan; Vasundara V. (State College, PA), The Pennsylvania State University (State College, PA). — № 252516, appl. 30.09.1988, published on 14.08.1990.Google Scholar
  68. 68.
    Pat. 6426457, USA, MPK Н 05 К 09/00. Apparatus and method for shielding electromagnetic wave / Toyoda; Junichi (Tokyo, JP); Iwashita; Sakan (Kanagawa), JP; Sony Corporation (Tokyo, JP). — № 292833, appl. 16.04.1999, published on 30.07.2002Google Scholar
  69. 69.
    H.H.S. Javadi, K.R. Cromack, A.G. MacDiarmid, A.J. Epstein, Microwave transport in the emeraldine form of polyaniline. Phys. Rev. B 39(6), 3579 (1989)CrossRefGoogle Scholar
  70. 70.
    Pat. 5079334, USA, MPK С 08 G 65/38; В 05 D 03/02; В 05 D 03/06; В 05 D 03/14. Electromagnetic radiation absorbers and modulators comprising polyaniline / Epstein; Arthur J. (Bexley, OH); Ginder; John M (Columbus, OH); The Ohio State University Research Foundation (Columbus, OH). — № 193964, appl. 13.05.1988, published on 7.01.1992.Google Scholar
  71. 71.
    P. Chandrasekhar, K. Naishadham, Broadband microwave absorption and shielding properties of a poly(aniline). Synth. Met. 105(2), 115–120 (1999)CrossRefGoogle Scholar
  72. 72.
    J.V. Mantese, A.L. Micheli, D.F. Dungan, et al., Applicability of effective medium theory to ferroelectric/ferromagnetic composites with composition and frequency-dependent complex permittivities and permeabilities. J. Appl. Phys. 79(3), 1655 (1996)CrossRefGoogle Scholar
  73. 73.
    Pat. 6646199, USA, MPK H 05 К 09/00. Polymeric foam gaskets and seals / Botrie Alexander; Chemque, Inc. (CA). — № 842261, appl. 26.04.2001, published on 11.11.2003.Google Scholar
  74. 74.
    Pat. 6521829. USA. MPK Н05К 009/00. Electromagnetic wave absorbing sheet. Matsumura, Kazuhito (1-8, Wakakusa No. 2 Housing, 1-12, Wakakusa 2-chome, Utsunomiya City, Tochigi Prefecture, JP); Yoshida; Kenichi (Osaka, JP); Iwai; Tohru (Osaka, JP); Nakata; Hidekazu (Utsunomiya, JP); Yoshizawa; Masato (Utsunomiya, JP)/ Japan Science and Technology Corporation (Saitama Prefecture, JP); Sumitomo Electric Industries, Ltd. (Osaka Prefecture, JP); Kanto Wire Products Corporation (Tochigi Prefecture, JP); Matsumura; Kazuhito (Tochigi Prefecture, JP). — № 117092, appl. 8.04.2002, published on 18.02.2003.Google Scholar
  75. 75.
    A.T. Ponomarenko, V.G. Shevchenko, N.E. Kazantseva, et al., Anisotropic effects in the polymer composites with the electric and magnetic properties. Materials, Technologies, Tools 6(2), 11–22 (2001)Google Scholar
  76. 76.
    Pat. 5561428, USA, MPK Н 01 Q 17/00. Electromagnetic radiation absorber and method for the production thereof / Czaja Stan ; Winchell Perin; Meckel Benjamin B.; General Atomics (San Diego, CA). — № 700648, appl. 12.02.1985, published on 1.10.1996.Google Scholar
  77. 77.
    Pat. 4435465, USA, MPK В32В 003/00; 367; 195; 206. Composite material for shielding against electromagnetic radiation. Ebneth; Harold (Leverkusen, DE); Fitzky; Hans G. (Odenthal, DE); Oberkirch; Wolfgang (Cologne, DE)/ Bayer Aktiengesellschaft (Leverkusen, DE). — № 272803, appl. 11.06.1981, published on 6.03.1984.Google Scholar
  78. 78.
    InuiT., YoshiuchiS., HaradaT., llatakeyamaK. Newly developed nonwoven fabric em-wave absorber// Int. Symp. Electromagn. Compat. Nagoya. — 1989. — Vol. 2. — Pp. 775-779.Google Scholar
  79. 79.
    Pat. 5827997, USA, MPK H 05 К 9/00. Metal filaments for electromagnetic interference shielding / Debora D.L.Chung, Xiaoping Shui (NY). — № 328266, appl. 30.09.1994, published on 27.10.1998.Google Scholar
  80. 80.
    Pat. 6610395 USA MPK D 04 Н 01/00; D 04 Н 13/00; D 04 Н 03/00; D 04 Н 05/00. Breathable electromagnetic shielding material. / Rohrbach Ronald P.; Nathasingh David; Lem Kwok-Wai, Honeywell International Inc. (Morristown, NJ). — №878360, appl. 11.06.2001, published on 26.08.2003.Google Scholar
  81. 81.
    L.M. Lynkov, V.A. Petrova, V.A. Bogush, et al., Flexible mesh shields, fabricated by machine-weaving method. Proc. Belarussian Eng. Acad (1(11)/3), 140–142 (2001)Google Scholar
  82. 82.
    L.M. Lynkov, V.A. Bogush, V.P. Glybin, et al., Radio-protective materials on the basis of the metallic clusters in the polymer matrices. Mater. Technol. Tools З(2), 61 (1998)Google Scholar
  83. 83.
    L.M. Lynkov, V.A. Bogush, S.M. Zavadsky, E.A. Senkovets, Nickel containing thin film coatings on the fiber materials. Lett. J. Theor. Phys 29(15), 55–60 (2003)Google Scholar
  84. 84.
    K.N. Rozanov, E.A. Preobrazhensky, Application in the Non-Linear and Active Materials for Creation of the Wide Band Radio Absorbers. Successes of the Modern Radio Electronics — 2003 — № 3 —pp. 26–40.Google Scholar
  85. 85.
    Pat. 5036323, USA, MPK G 01 S 07/38; Н 01 Q 15/00. Active radar stealth device / Cain; R. Neal (Fredericksburg, VA); Corda; Albert J. (Dahlgren, VA); Secretary of the Navy (Washington, DC). — № 583624, appl. 17.09.1990, published on 30.07.1991,Google Scholar
  86. 86.
    V.P. Egorova, N.V. Ershova, A.V. Mezenov, N.A. Chernyavskaya, Filters of Long Wave Irradiation on the Basis of the Porous Materials. Optical-Physical Measurements of the Materials and Objects Parameters: Collection of Scientific Works — Bulletin of LETI, Issue 383.—L., 1987, pp. 64–68.Google Scholar
  87. 87.
    V.I. Gaiduk, B.M. Liberman, V.N. Apletalin, V.V. Meriakri, Molecular model of the “super debye-like” irradiation absorption in water and water solution of non-electrolite. Radiotech. Radioelectron 44(2), 234–242 (1999)Google Scholar
  88. 88.
    Ryszard S. Jachowicz. Moisture content measurements in solid limitations and improvements with modem technology // Electromagnetic wave interaction with water and moist substances: Collect, of papers of 3-d workshop — Georgia, USA, April, 1999 — Pp.32-41.Google Scholar
  89. 89.
    F. Lu, S. Okamura, Determining moisture content in a broad range of sawdust from microwave transmission measurement using microstrip line. Proc. SPIE 4129, 82–87 (2000)CrossRefGoogle Scholar
  90. 90.
    N.I. Sinitsyn, V.I. Petrosyan, V.A. Elkin, SPE-effect. Radiotechnics (8), 83–93 (2000)Google Scholar
  91. 91.
    Interaction physics of millimeter waves with the objects of various nature V. I. Petrosyan, E. A. Zhitineva, Yu V. Gulyaev and et al Radiotechnics 1996 9. — pp. 20—31.Google Scholar
  92. 92.
    V.I. Petrosyan, N.I. Sinitsyn, V.A. Elkin, et al., Problems of indirect and direct observation of the resonance transparency of aquatic environments in the millimeter band. Biomed. Radioelectron (I), 34–40 (2000)Google Scholar
  93. 93.
    L.M. Lynkov, T.V. Borbotko, A.V. Gusinsky, N.V. Kolbun, Influence of SPE-effect on the shielding properties of the electromagnetic irradiation absorbers. Rep. BSUIR 1(2), 139–140 (2003)Google Scholar
  94. 94.
    A.T. Ponomarenko, N.G. Ryvkina, N.E. Kazantseva, et al., Modeling of electrodynamic properties control in liquid-impregnated porous ferrite media. Proc. SPIE 3667, 785–796 (1999)CrossRefGoogle Scholar
  95. 95.
    A.T. Ponomarenko, N.G. Ryvkina, I.A. Tchmutin, et al., Computation of electrodynamic properties of structures with liquid components. Proc. SPIE 2722, 256–265 (1996)CrossRefGoogle Scholar
  96. 96.
    S. S. Grabchikov Application of Multilayer Film Shields of the Radio Electronic and Scientific Equipment from Influence of the Wide Spectrum of the Electromagnetic Irradiations. SO «RPC NAS of Belarus of Materials Science»; e-mail: Published in «Collection of Scientific Works «Contemporary Methods and Technologies of Creation and Treatment of Materials» in 3 books, Book 1, Materials Science / S. A. Astapchik (Editor-in-Chief) Minsk: FTI of NAS of Belarus, 2016, pp. 58-67.Google Scholar
  97. 97.
    L.N. Kechiev, B.B. Akbashev, P.V. Stepanov, Shielding of Technical Means and Shielding Systems (Publishing House: «Group ITD» М, 2010), p. 470Google Scholar
  98. 98.
    D.N. Shapiro, Fundamentals of the Electromagnetic Shielding Theory L., «Energy», 1975, pp. 112Google Scholar
  99. 99.
    I.I. Grodnev, Electromagnetic Shielding in the Wide Range of Frequencies М.: «Communications» 1972, pp. 112Google Scholar
  100. 100.
    V.S. Shtorgin, Y.N. Shvyrev, A. N. Shatokhin Patent of the RF №200210891, 27.02.2004.Google Scholar
  101. 101.
    S.S. Grabchikov, L.B. Sosnovskaya, T.E. Sharapa, Multilayer Electromagnetic Shield Patent of the RB РБ №11843 of 2009.01.28.Google Scholar
  102. 102.
    V. Yu, Glonyagin Elements of Theory and Calculations of the Magnetic Static Fields of the Ferromagnetic Bodies (L.: Ship Building, 1967), p. 180Google Scholar
  103. 103.
    M.L. Volin, Parasitic Processes in the Radio Electronic Equipment (М.: Radio and Communications, 1981), p. 296Google Scholar
  104. 104.
    A.M. Chernushenko, Structural Designs of Microwave Devices and Shields (М.: Radio and Communications, 1983), p. 400Google Scholar
  105. 105.
    S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, et al., Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater (398), 49–53 (2016)CrossRefGoogle Scholar
  106. 106.
    S.S. Grabchikov, G.F. Gromyko, V.T. Erofeenko, G.M. Zayats, Efficiency of shielding the constant magnetic fields with cylindrical shield with consideration of the non-linear effects. Physical Fundamentals of Instrument-Making 4(4), 30–39 (2015)Google Scholar
  107. 107.
    V.V. Dmitrenko, A.G. Batishchev, S.S. Grabchikov, et al., Multilayer Electromagnetic Shield for Protection of the Photoelectronic Multipliers and Method of Its Application. Patent on Invention. RF. № 2474890 of 10.02.2013г.Google Scholar
  108. 108.
    V.V. Dmitrenko, D. Besson, S.S. Grabchikov, et al., Multilayer film shields for the protection of PMT from constant magnetic field. Rev. Sci. Instrum. 86, 013903-1÷013903-3 (2015)CrossRefGoogle Scholar
  109. 109.
    V.V. Dmitrenko, S.S. Grabchikov, P.V. Newnt, et al., Prospects for Application of the Multilayer Film Shields for Protection of the Space Equipment from the Constant Magnetic Fields. Concise Reports on Physics of FIAS, №5, 2015, pp. 43–48.Google Scholar
  110. 110.
    N.A. Vasilenkov, S.S. Grabchikov, A.Y. Maksimov, A.V. Trukhanov, Protection of the Radio Electronic Equipment from Influence of Magneto-static and Low Frequency Electromagnetic Fields. Roscosmos, MAKS-2015; Collection of articles of the Federal Space Agency, 2015, pp. 52–54.Google Scholar
  111. 111.
    N.I. Balyuk, L.N. Kechiev, P.V. Stepanov, Powerful Electromagnetic Pulse: Influence on the Electronic Means and Methods of Protection (LLS «Group IDT», Moscow, 2008), p. 478Google Scholar
  112. 112.
    A.G. Batishchev, A.M. Galper, V.V. Dmitrenko, A.Y. Zamesov, P.Y. Naumov, S.S. Grabchikov, L.B. Sosnovskaya, A.V. Cheledyuk, T.E. Sharapa, S.A. Grishin, A.L. Petyuk, Application of the multilayer film electromagnetic shields in the onboard space physical spectrometers. Nucl. Phys. Eng 3(5), 1–8 (2012)Google Scholar
  113. 113.
    S.S. Grabchikov, A.V. Trukhanov, A.A. Solobai, V.T. Erofeenko, N.A. Vasilenkov, Efficiency of Magnetic Static Shielding with Cylindrical Shells (Scientific-Practical Center of NAS of Belarus on Materials Science, Minsk). E-mail: solobai@physics.byGoogle Scholar
  114. 114.
    L.I. Fufaeva, Efficiency of Shielding the Constant Magnetic Fields with Multilayer Shields / L. I. Fufaeva, A. B. Timofeev // Works of MAI – 1976. – Issue 364. – pp. 58–63.Google Scholar
  115. 115.
    Y.V. Glonyagin, Elements of Theory and Calculations of the Magnetic Static Fields of the Ferromagnetic Bodies (L.: Ship Building, 1967), p. 180Google Scholar
  116. 116.
    M.L. Volin, Parasitic Processes in Radio Electronic Equipment (M.: Radio and Communications, 1981), p. 296Google Scholar
  117. 117.
    A.M. Chernushenko, Structural Designs of the Microwave Devices and Shields (M.: Radio and Communications, 1983), p. 400Google Scholar
  118. 118.
    S.M. Appolonsky, Calculations of Electromagnetic Fields / S. M. Appolonsky, A. N. Gorsky − M.: Route (Marshrut), 2006 – 992 pp.Google Scholar
  119. 119.
    G.E. Zilberman, Electricity and Magnetism (M.: Science, 1970), p. 382Google Scholar
  120. 120.
    S.S. Grabchikov, Multilayer Electromagnetic Shield / S. S. Grabchikov, L. B. Sosnovskaya, T. E. Sharapa: Pat. Of the Republic of Belarus 11843 of 28.01.2009.Google Scholar
  121. 121.
    D. N. Shapiro Fundamentals of the Electromagnetic Shielding Theory / D. N. Shapiro – L., 1975. – 112 pp.Google Scholar
  122. 122.
    E.G. Shramkov et al., Electric and Magnetic Measurements (L.: Publishers of PCTP of the USSR, 1937), p. 585Google Scholar
  123. 123.
    V.T. Erofeenko et al., Shielding Model of the Constant Magnetic Fields with a Multilayer Cylindrical Shield. Informatics 3(35), 80–93 (2012)Google Scholar
  124. 124.
    V. Yu, M.M. Kirillov, Tomilin influence of the induced electromagnetic influences of the onboard cables of the spacecraft. Electron. J «Works of MAI» (66)Google Scholar
  125. 125.
    G.I. Atabekov, S.D. Kupalyan, A.B. Timofeev, S.S. Khukhrikov, Non-Linear Electrical Circuits Electromagnetic Field. Under Edition of G. I. Atarbekov M.: Energy, 1979. – 432 pp.Google Scholar
  126. 126.
    V.I. Kravchenko, E.A. Bolotov, N.I. Letunova, under Edition of V. I. Kravchenko Radio Electronic Means and Electromagnetic Interferences – M.: Radio and Communications, 1987, pp. 256.Google Scholar
  127. 127.
    A.F. Dyakov, B.K. Maksimov, R.K. Borisov, I.P. Kuzhekin, A.V. Zhukov Electromagnetic Compatibility in Electric Power Engineering and Electrotechnology / Under Edition of A. F. Dyakov – M.: Energoatomizdat, 2003, pp. 768Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anatoly Belous
    • 1
  • Vitali Saladukha
    • 1
  • Siarhei Shvedau
    • 1
  1. 1.IntegralMinskBelarus

Personalised recommendations