Advertisement

Methods and Equipment for Studying the Processes of the Interaction of High-Velocity Streams of Microparticles with Materials

  • Anatoly Belous
  • Vitali Saladukha
  • Siarhei Shvedau
Chapter

Abstract

This chapter is dedicated to the description of the most effective techniques and analytical test equipment required for the experimental research of interaction processes of high-velocity microparticles with various protective materials.

Keywords

Multilayer magnetic shields Accelerator of microparticles 

References

  1. 1.
    J.F. Leavy, R.A. Роll, Radiation induced integrated circuit latch-up. IEEE Trans. Nucl. Sci NS-16(6), 96–103 (1969)CrossRefGoogle Scholar
  2. 2.
    A.B. Greben, Designing of Analog Integrated Curcuits (Energiya, Moscow, 1976), p. 256Google Scholar
  3. 3.
    H.T. Gates, R.E. Darling, Technique for obtaining hardened semiconductor devices by Irradiating Wafers. IEEE Trans. Nucl. Sci NS-17(6), 183–187 (1970)Google Scholar
  4. 4.
    B. Matisich, Problems of calculating a low-noise integrated preamplifier. Pap. Inst. Electr. Electron. Eng 53(6), 753 (1965)Google Scholar
  5. 5.
    R. Lacoe, CMOS scaling, design principles and hardening-by-design methodologies, 2003 IEEE NSREC. Short Course “Radiation effects in advanced commercial technologies: how design scaling has affected the selection of spaceborne electronics”. July 2003, Monterey, California. pp. 111–142.Google Scholar
  6. 6.
    F.P. Korshunov, Y.V. Bogatyrev, A.I. Belous, S.V. Shvedov, S.B. Lastovsky, V.I. Kulgachev, Influence of the Electric Mode on Radiation Change in Parameters of MOS Transistors. in Radiation Resistance of Electronic Systems −Stoikost 2005: Materials of the All-Russian Scientific Conference, Lytkarino, Russia, June 7–8, 2005. Moscow Engineering Physics Institute (MEPhI). Moscow, 2005. pp. 163−164Google Scholar
  7. 7.
    F.P. Korshunov, Y.V. Bogatyrev, S.B. Lastovsky, V.I. Kulgachev, A.I. Belous, S.V. Shvedov, Relaxation Processes in Irradiated Transistor Bipolar and MOS Structures, in Radiation Physics of Solids: Proceedings of the XVII International Meeting, Sevastopol, July 9−14, 2007. Research Institute of Promising Materials and Technologies at Moscow State Institute of Electronics and Mathematics (TU); editorial board: G.G. Bondarenko et al. Moscow, 2007. pp. 678−684Google Scholar
  8. 8.
    F.P. Korshunov, Y.V. Bogatyrev, A.I. Belous, S.V. Shvedov, S.B. Lastovsky, V.I. Kulgachev, Influence of gamma radiation on parameters of various transistor MOS structures and elements of integrated circuits. Rep. Belarusian State Univ. Inf. Radio Electron 1(17), 67–72 (2007)Google Scholar
  9. 9.
    F.P. Korshunov, Y.V. Bogatyrev, A.I. Belous, S.V. Shvedov, N.F. Golubev, S.B. Lastovsky, V.I. Kulgachev, Ensuring the Performance of Various Promising Semiconductor Devices under Radiation Exposure, in Microwave Equipment and Telecommunication Technologies: Proceedings of the 17th International Crimean Conference (KryMiKo2007), Sevastopol, September 10−14, 2007. Sevastopol. Weber, 2007. vol. 2. pp. 651−654Google Scholar
  10. 10.
    F.P. Korshunov, Y.V. Bogatyrev, A.I. Belous, S.V. Shvedov, S.B. Lastovsky, Methods of Radiation Research of CMOS Integrated Circuits, in Problems of Atomic Science and Technology. Ser.: Physics of Radiation Exposure of Radio-Electronic Equipment. 2003. vol. 4. pp. 57−60Google Scholar
  11. 11.
    D.V. Boichenko, L.N. Kessarinsky, A.A. Borisov, S.V. Shvedov, A Comparative Study of the Radiation Behavior of ICs in Voltage Regulators, in Radiation Resistance of Electronic Systems −Stoikost 2005: Stoikost 2005: Materials of the All-Russian Scientific Conference, Lytkarino, Russia, June 7−8, 2005. Moscow Engineering Physics Institute (MEPhI). Moscow, 2005. pp. 81−82Google Scholar
  12. 12.
    A.S. Artamonov, S.L. Malyugin, S.V. Shvedov, G.I. Usov, Study of Radiation Resistance of Quick-Acting CMOS ICs of 1594T Series, in Radiation Resistance of Electronic Systems − Resistance 2003: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 3−4, 2003. Moscow Engineering Physics Institute (MEPhI). Moscow, 2003. pp. 71−72Google Scholar
  13. 13.
    A.V. Kirgizova, A.G. Petrov, I.B. Yashanin, S.V. Shvedov, G.I. Usov, Comparative assessment of resistance levels for similar LSI RAM CMOS on SOS and SOI structures in relation to ionizing effects, in Radiation resistance of electronic systems − Resistance 2006: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 6−7, 2006. Moscow Engineering Physics Institute (MEPhI). Moscow, 2006. pp. 69−70Google Scholar
  14. 14.
    A.I. Belous, V.P. Bondarenko, L.N. Dolgy, V.S. Malyshev, A.V. Mudry, V.S. Syakersky, S.V. Shvedov, Photoluminescent Study of SOI Structures, in Current Problems of Solid State Physics − Solid State Physics 2007: Materials of the International Conference, Minsk, October 23−26, 2007. Publishing House of the BSU; editorial board: N.M. Olekhnovich et al. Minsk, 2007. vol. 2. pp. 12−15Google Scholar
  15. 15.
    D.V. Boychenko, L.N. Kessarinsky, S.V. Shvedov, A Comparative Study of the Radiation Behavior of Analog ICs, in Radiation Resistance of Electronic Systems − Resistance 2007: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 5−6, 2007. Moscow Engineering Physics Institute (MEPhI). Moscow, 2007. pp. 17−18Google Scholar
  16. 16.
    V.S. Figurov, V.V. Baikov, V.V. Shelkovnikov, A.S. Artamonov, S.V. Shvedov, Main Results of Radiation Tests of Series 5584 Chips, in Radiation Resistance of Electronic Systems − Resistance 2007: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 5−6, 2007. Moscow Engineering Physics Institute (MEPhI). Moscow, 2007. pp. 35−36Google Scholar
  17. 17.
    V.S. Figurov, V.V. Baikov, V.V. Shelkovnikov, S.V. Shvedov, Experimental Evaluation of the Minimum Possible Value of the Trouble-Free Work Level of 5584IE10T Chips According to Test Results Obtained on BARS-4 and GU-200, in Radiation Resistance of Electronic Systems − Resistance 2007: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 5−6, 2007. Moscow Engineering Physics Institute (MEPhI). Moscow, 2007. pp. 37−38Google Scholar
  18. 18.
    O.A. Kalashnikov, Y. NikiforovA, V.A. Emelyanov, A.V. Pribylsky, S.V. Shvedov, Studies of radiation resistance of EPROM 1568PP1, in Radiation Resistance of Electronic Systems − Resistance 2001: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 5−6, 2001. Moscow Engineering Physics Institute (MEPhI). M., 2001. pp. 53−54Google Scholar
  19. 19.
    A.V. Yanenko, A.V. Kirgizova, S.V. Shvedov, G.I. Usov, Study Results for Radiation Resistance of Test RAM LSI, in Radiation Resistance of Electronic Systems − Resistance 2004: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 1−2, 2004. Moscow Engineering Physics Institute (MEPhI). Moscow, 2004. pp. 71−72Google Scholar
  20. 20.
    A.V. Yanenko, A.V. Kirgizova A.G. Petrov, A.A. Demidov, G.I. Usov, S.V. Shvedov, Sampling Time Control for Data of RAM LSI CMOS at a Dosage Exposure, in Radiation Resistance of Electronic Systems −Stoikost 2005: Proceedings of the All-Russian Scientific Conference, Lytkarino, Russia, June 1−2, 2004. Moscow Engineering Physics Institute (MEPhI). Moscow, 2004. pp. 209−210Google Scholar
  21. 21.
    V.P. Bondarenko, Y.V. Bogatirev, L.N. Dolgyi, A.M. Dorofeev, A.K. Panfilenko, S.V. Shve-dov, G.N. Troyanova, N.N. Vorozov, V.A. Yakovtseva, 1.2 μmCMOS/SOIonporoussilicon. in Physical and Technical Problems of SOI Structuresand Devices. ed. by J.P. Colinge et.al. (Kluwer Academic Publishers, The Netherlands, 1995), pp. 275–280Google Scholar
  22. 22.
    N.V. Aliyeva, A.I. Belous, V.P. Bondarenko, L.N. Dolgy, V.A. Labunov, V.S. Malyshev, A.V. Mudry, S.A. Soroka, G.I. Usov, S.V. Shvedov, Study of SRAM 8K LSI Based on SOI Structures, in Problems of Development of Promising Micro Electronic Systems − 2006 (Micro Electronic Systems 2006): Collection of papers of the II Russian Scientific and Technical Conference, Moscow, October 9−13, 2006. Institute of Design Problems in Microelectronics of the Russian Academy of Sciences. Moscow, 2006. pp. 289−294Google Scholar
  23. 23.
    F.P. Korshunov, V. Bogatyrev, A.I. Belous, S.V. Shvedov, S.B. Lastovsky, V.I. Kulgachev, V.A. Gurinovich, Radiation Effects in Bipolar and CMOS Integrated Circuits, in Microwave Equipment and Telecommunication Technologies: Proceedings of the 18th International Crimean Conference (KryMiKo 2008), Sevastopol, September 8−12, 2008. Sevastopol. Weber, 2008. vol. 2. pp. 659−661Google Scholar
  24. 24.
    V.A. Giry et al., Effect of Irradiation Temperature on Radiative Processes in MIS structures. Optoelectron. Semicond. Equip (2), 78–81 (1982)Google Scholar
  25. 25.
    A.I. Demchenko, V.S. Syakersky, S.V. Shvedov, V.P. Bondarenko, L.N. Dolgy, V. Bogatyrev, Study of Radiation-Resistant Element Base of VLSI CMOS on SOI Bodies, in Microwave Equipment and Telecommunication Technology: Proceedings of the 19th International Crimean Conference (KryMiKo 2009), Sevastopol, September 14−18, 2009. Sevastopol. Weber, 2009. vol. 2. pp. 728−729Google Scholar
  26. 26.
    J.P. Mitchell, Radiation-induced space-charge buildup in MOS structures. IEEE Trans. Electron Dev ED-14(11), 764–774 (1967)CrossRefGoogle Scholar
  27. 27.
    A.G. Holmes-Siedle, K.H. Zaininger, The physics of failure of MIS devices under radiation. IEEE Trans. Reliability R-17(1), 34–44 (1968)CrossRefGoogle Scholar
  28. 28.
    A.A. Witteles, Neutron radiation effects on MOS FETs: theory and experiment. IEEE Trans. Nucl. Sci NS-15(6), 126–132 (1968)CrossRefGoogle Scholar
  29. 29.
    C.W. Gwyn, Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices. J. Appl. Phys 40(12), 4886–4892 (1969)CrossRefGoogle Scholar
  30. 30.
    D.V. Lang, Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys 45(7), 3023–3032 (1974)CrossRefGoogle Scholar
  31. 31.
    B. Lox, S.T. Newstadter, Transient response of p-n-junction. J. Appl. Phys 25, 1148–1154 (1984)CrossRefGoogle Scholar
  32. 32.
    L.S. Berman, A.A. Lebedev, Capacitive Spectroscopy of Deep Centers in Semiconductors (Nauka, Leningrad, 1981), p. 176Google Scholar
  33. 33.
    V.S. Vavilov, V.F. Kiselev, B.N. Mukhashev, Defects in Silicon and on Its Surface (Nauka, Moscow, 1990), p. 216Google Scholar
  34. 34.
    V.P. Markevich, L.I. Murin, Selective capture of interstitial carbon atoms in irradiated silicon. Phys. Technol. Semicond 22(5), 911–914 (1988)Google Scholar
  35. 35.
    V.P. Markevich et al., Defect reactions associated with divacancy elimination in silicon. J. Phys.: Condensed Matter 15, S2779–S2789 (2003)Google Scholar
  36. 36.
    M.G. Milvidsky, V.V. Cheldyshev, Nano-sized atomic clusters in semiconductors – a new approach to formation of properties of materials. Overview Phys. Technol. Semicond 32(5), 513–522 (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anatoly Belous
    • 1
  • Vitali Saladukha
    • 1
  • Siarhei Shvedau
    • 1
  1. 1.IntegralMinskBelarus

Personalised recommendations