Hepatocellular Cancer Induced by Infection

  • David E. KaplanEmail author
  • Kyong-Mi ChangEmail author
  • Arun Sanyal
Part of the Current Cancer Research book series (CUCR)


Hepatocellular carcinoma is the fifth most common cancer and second leading cause of cancer death worldwide. Chronic viral infections contribute to approximately three-fourths of these cancers either as direct carcinogens or indirectly mediated through progressive hepatic fibrosis and cirrhosis. Bacteria, specifically the gut microbiome, also contributes to the in the genesis of hepatocellular carcinoma. Obesity-related nonalcoholic fatty liver disease and alcoholic liver disease, the major non-viral causes of chronic liver disease predisposing to liver cancer, alter the composition of the gut microbiome, which appears to foster development and progression of pre-malignant and malignant liver neoplasms. Emerging data implicates patterns of dysbiosis with alterations of bile acid metabolism, insulin resistance, fibrogenesis, and gut barrier integrity that contribute to intrahepatic inflammatory signaling and carcinogenesis. In vitro, small animal model, and human data supporting the role of chronic viral infection and bacterial derangements in hepatocarcinogenesis will be reviewed.


Hepatocellular carcinoma Cirrhosis Microbiome Hepatitis B Hepatitis C Alcohol Toll-like receptors Bacterial translocation Bile acids 


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386Google Scholar
  2. 2.
    Stewart BW, Wild C, International Agency for Research on Cancer, World Health Organization (2014) World cancer report 2014. Lyon, France. International Agency for Research on Cancer, WHO Press, World Health Organization, Geneva Scholar
  3. 3.
    Beasley RP, Hwang LY, Lin CC, Chien CS (1981) Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 2(8256):1129–1133PubMedCrossRefGoogle Scholar
  4. 4.
    Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG (2013) Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett 5(4):1087–1092PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Trevisani F, Frigerio M, Santi V, Grignaschi A, Bernardi M (2010) Hepatocellular carcinoma in non-cirrhotic liver: a reappraisal. Dig Liver Dis 42(5):341–347PubMedCrossRefGoogle Scholar
  6. 6.
    Perumpail RB, Wong RJ, Ahmed A, Harrison SA (2015) Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci 60(10):3142–3148PubMedCrossRefGoogle Scholar
  7. 7.
    Serper MA, Taddei TH, Mehta R et al (2017) Association of provider specialty and multi-disciplinary care with hepatocellular carcinoma treatment and mortality. Gastroenterology 152(8):1954–1964PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang S, Sun H, Xie Z et al (2016) Improved survival of patients with hepatocellular carcinoma and disparities by age, race, and socioeconomic status by decade, 1983–2012. Oncotarget 7(37):59820–59833PubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang JD, Ahmed Mohammed H, Harmsen WS, Enders F, Gores GJ, Roberts LR (2017) Recent trends in the epidemiology of hepatocellular carcinoma in Olmsted County, Minnesota: a US population-based study. J Clin Gastroenterol 51(8):742–748PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Levrero M, Zucman-Rossi J (2016) Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 64(1 Suppl):S84–S101PubMedCrossRefGoogle Scholar
  11. 11.
    Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R (1990) The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature 343(6257):457–461PubMedCrossRefGoogle Scholar
  12. 12.
    Hohne M, Schaefer S, Seifer M, Feitelson MA, Paul D, Gerlich WH (1990) Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J 9(4):1137–1145PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Guerrieri F, Belloni L, D'Andrea D et al (2017) Genome-wide identification of direct HBx genomic targets. BMC Genomics 18(1):184PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Huang SN, Chisari FV (1995) Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology 21(3):620–626PubMedGoogle Scholar
  15. 15.
    Moriya K, Fujie H, Shintani Y et al (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4(9):1065–1067PubMedCrossRefGoogle Scholar
  16. 16.
    Mason WS, Gill US, Litwin S et al (2016) HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151(5):986–998 e984PubMedCrossRefGoogle Scholar
  17. 17.
    Jacob JR, Sterczer A, Toshkov IA et al (2004) Integration of woodchuck hepatitis and N-myc rearrangement determine size and histologic grade of hepatic tumors. Hepatology 39(4):1008–1016PubMedCrossRefGoogle Scholar
  18. 18.
    Tennant BC, Toshkov IA, Peek SF et al (2004) Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology 127(5 Suppl 1):S283–S293PubMedCrossRefGoogle Scholar
  19. 19.
    Liang HW, Wang N, Wang Y et al (2016) Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122. J Hepatol 64(2):278–291PubMedCrossRefGoogle Scholar
  20. 20.
    Lau CC, Sun T, Ching AK et al (2014) Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25(3):335–349PubMedCrossRefGoogle Scholar
  21. 21.
    Kgatle MM, Setshedi M, Hairwadzi HN (2016) Hepatoepigenetic alterations in viral and nonviral-induced hepatocellular carcinoma. Biomed Res Int 2016:3956485PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Naas T, Ghorbani M, Alvarez-Maya I et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86(Pt 8):2185–2196PubMedCrossRefGoogle Scholar
  23. 23.
    Lerat H, Honda M, Beard MR et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122(2):352–365PubMedCrossRefGoogle Scholar
  24. 24.
    Klopstock N, Katzenellenbogen M, Pappo O et al (2009) HCV tumor promoting effect is dependent on host genetic background. PLoS One 4(4):e5025PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhang J, Ishigaki Y, Takegami T (2015) Hepatitis C virus NS3 protein modulates the biological behaviors of malignant hepatocytes by altering the expression of host cell microRNA. Mol Med Rep 12(4):5109–5115PubMedCrossRefGoogle Scholar
  26. 26.
    Majumder M, Steele R, Ghosh AK et al (2003) Expression of hepatitis C virus non-structural 5A protein in the liver of transgenic mice. FEBS Lett 555(3):528–532PubMedCrossRefGoogle Scholar
  27. 27.
    Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV (1998) Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188(2):341–350PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kaplan DE, Ikeda F, Li Y et al (2008) Peripheral virus-specific T-cell interleukin-10 responses develop early in acute hepatitis C infection and become dominant in chronic hepatitis. J Hepatol 48(6):903–913PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nakamoto N, Kaplan DE, Coleclough J et al (2008) Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134(7):1927–1937 1937 e1921–1922PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nakamoto N, Cho H, Shaked A et al (2009) Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 5(2):e1000313PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Park JJ, Wong DK, Wahed AS et al (2016) Hepatitis B virus—specific and global T-cell dysfunction in chronic hepatitis B. Gastroenterology 150(3):684–695 e685PubMedCrossRefGoogle Scholar
  32. 32.
    Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK (2013) From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer 2(3-4):367–383PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fox JG, Feng Y, Theve EJ et al (2010) Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59(1):88–97PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Li J, Sung CY, Lee N et al (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A 113(9):E1306–E1315PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dapito DH, Mencin A, Gwak GY et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fukui H, Brauner B, Bode JC, Bode C (1991) Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol 12(2):162–169PubMedCrossRefGoogle Scholar
  37. 37.
    Yu LX, Yan HX, Liu Q et al (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52(4):1322–1333PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang HL, Yu LX, Yang W et al (2012) Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol 57(4):803–812PubMedCrossRefGoogle Scholar
  39. 39.
    Bode JC (1980) Alcohol and the gastrointestinal tract. Ergeb Inn Med Kinderheilkd 45:1–75PubMedGoogle Scholar
  40. 40.
    Ruiz AG, Casafont F, Crespo J et al (2007) Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 17(10):1374–1380PubMedCrossRefGoogle Scholar
  41. 41.
    Gomes JM, Costa JA, Alfenas RC (2017) Metabolic endotoxemia and diabetes mellitus: a systematic review. Metab Clin Exp 68:133–144PubMedCrossRefGoogle Scholar
  42. 42.
    Wang X, Parsson H, Soltesz V, Johansson K, Andersson R (1995) Bacterial translocation and intestinal capillary permeability following major liver resection in the rat. J Surg Res 58(4):351–358PubMedCrossRefGoogle Scholar
  43. 43.
    Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG (1995) Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108(1):218–224PubMedCrossRefGoogle Scholar
  44. 44.
    Nanji AA, Khettry U, Sadrzadeh SM (1994) Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med 205(3):243–247PubMedCrossRefGoogle Scholar
  45. 45.
    Elamin E, Jonkers D, Juuti-Uusitalo K et al (2012) Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model. PLoS One 7(4):e35008PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Elamin E, Masclee A, Dekker J, Jonkers D (2014) Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation. Am J Physiol Gastrointest Liver Physiol 306(8):G677–G685PubMedCrossRefGoogle Scholar
  47. 47.
    Jiang W, Wu N, Wang X et al (2015) Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 5:8096PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Grat M, Wronka KM, Krasnodebski M et al (2016) Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant Proc 48(5):1687–1691PubMedCrossRefGoogle Scholar
  49. 49.
    Aly AM, Adel A, El-Gendy AO, Essam TM, Aziz RK (2016) Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog 8(1):42PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Acharya C, Bajaj JS (2017) Gut microbiota and complications of liver disease. Gastroenterol Clin N Am 46(1):155–169CrossRefGoogle Scholar
  51. 51.
    Bull-Otterson L, Feng W, Kirpich I et al (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 8(1):e53028PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Choi Y, Jeon WK, Hwang SJ et al (2011) The role of the gut barrier function in the pathophysiology of viral liver cirrhosis. Hepato-Gastroenterology 58(109):1244–1247PubMedGoogle Scholar
  53. 53.
    Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI et al (2013) Intestinal mucosal proliferation, apoptosis and oxidative stress in patients with liver cirrhosis. Ann Hepatol 12(2):301–307PubMedCrossRefGoogle Scholar
  54. 54.
    Ye D, Guo S, Al-Sadi R, Ma TY (2011) MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141(4):1323–1333PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Al-Sadi R, Ye D, Boivin M et al (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9(3):e85345PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sonnenberg GF, Monticelli LA, Alenghat T et al (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336(6086):1321–1325PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bajaj JS, Heuman DM, Hylemon PB et al (2014) Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther 39(10):1113–1125PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhao H, Zhao C, Dong Y et al (2015) Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease. Toxicol Lett 234(3):194–200PubMedCrossRefGoogle Scholar
  59. 59.
    Achiwa K, Ishigami M, Ishizu Y et al (2016) DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model. Biochem Biophys Res Commun 470(1):15–21PubMedCrossRefGoogle Scholar
  60. 60.
    Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101PubMedCrossRefGoogle Scholar
  61. 61.
    Joyce SA, Gahan CG (2016) Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol 7:313–333PubMedCrossRefGoogle Scholar
  62. 62.
    Wolf MJ, Adili A, Piotrowitz K et al (2014) Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26(4):549–564PubMedCrossRefGoogle Scholar
  63. 63.
    Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136(1):65–80PubMedCrossRefGoogle Scholar
  64. 64.
    Seki E, De Minicis S, Osterreicher CH et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332PubMedCrossRefGoogle Scholar
  65. 65.
    Liu J, Zhuang ZJ, Bian DX et al (2014) Toll-like receptor-4 signalling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice. Clin Exp Pharmacol Physiol 41(7):482–488PubMedCrossRefGoogle Scholar
  66. 66.
    Yang L, Miura K, Zhang B et al (2017) TRIF differentially regulates hepatic steatosis and inflammation/fibrosis in mice. Cell Mol Gastroenterol Hepatol 3(3):469–483PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Alisi A, Panera N, Balsano C, Nobili V (2011) Activation of the endotoxin/toll-like receptor 4 pathway: the way to go from nonalcoholic steatohepatitis up to hepatocellular carcinoma. Hepatology 53(3):1069PubMedCrossRefGoogle Scholar
  68. 68.
    Cengiz M, Ozenirler S, Elbeg S (2015) Role of serum toll-like receptors 2 and 4 in non-alcoholic steatohepatitis and liver fibrosis. J Gastroenterol Hepatol 30(7):1190–1196PubMedCrossRefGoogle Scholar
  69. 69.
    Liu H, Li J, Tillman B, Morgan TR, French BA, French SW (2014) TLR3/4 signaling is mediated via the NFkappaB-CXCR4/7 pathway in human alcoholic hepatitis and non-alcoholic steatohepatitis which formed Mallory-Denk bodies. Exp Mol Pathol 97(2):234–240PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sharifnia T, Antoun J, Verriere TG et al (2015) Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 309(4):G270–G278PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kim S, Park S, Kim B, Kwon J (2016) Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease. Sci Rep 6:27849PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of GastroenterologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  2. 2.Section of GastroenterologyCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaUSA
  3. 3.Division of GastroenterologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations