The Bleeding Post-op CT Patient: Coagulation Tests Versus Thromboelastography

  • Oksana VolodEmail author
  • Julie Wegner
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)


Bleeding is a common complication of cardiac surgery associated with the derangements of the hemostatic system related to cardiopulmonary bypass and the effects and consequences of the disease state. The cause of post-operative bleeding is often multifactorial and minimizing bleeding requires not only the correction of deficiencies, but also balancing of the different blood components that contribute to clot formation. The standard coagulation tests (SCTs) frequently used by clinicians to assess coagulation capacity do not reflect the complexity of the coagulation system and typically do not provide timely information, resulting in empirical management of bleeding. Point-of-care viscoelastic hemostasis assays (VHA) are tests that monitor the different phases from clot formation to clot lysis in whole blood and provide the clinician with more complete information about imbalances in the coagulation system. Coupled with transfusion algorithms, the information provided by VHAs allows clinicians to better identify coagulation defects and improve therapeutic decision-making.


Thromboelastography Thromboelastometry Sonoclot Cardiac surgery Adults Blood transfusions Bleeding Coagulation 


  1. 1.
    Roberts HR, Monroe DM, Escobar MA. Current concepts of hemostasis: implications for therapy. Anesthesiology. 2004;100(3):722–30.CrossRefGoogle Scholar
  2. 2.
    Monroe DM, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26(1):41–8.CrossRefGoogle Scholar
  3. 3.
    Despotis G, Eby C, Lublin DM. A review of transfusion risks and optimal management of perioperative bleeding with cardiac surgery. Transfusion. 2008;48(1, Suppl):2S–30S.CrossRefGoogle Scholar
  4. 4.
    Mann KG, Brummel-Ziedins K, Undas A, Butenas S. Does the genotype predict the phenotype? Evaluations of the hemostatic proteome. J Thromb Haemost. 2004;2(10):1727–34.CrossRefGoogle Scholar
  5. 5.
    Besser MW, Klein AA. The coagulopathy of cardiopulmonary bypass. Crit Rev Clin Lab Sci. 2010;47(5–6):197–212.CrossRefGoogle Scholar
  6. 6.
    Levi M, Hunt BJ. A critical appraisal of point-of-care coagulation testing in critically ill patients. J Thromb Haemost. 2015;13:1960–7.CrossRefGoogle Scholar
  7. 7.
    Benes J, Zatloukal J, Kletecka J. Viscoelastic methods of blood clotting assessment – a multidisciplinary review. Front Med. 2015;2:62.CrossRefGoogle Scholar
  8. 8.
    Chee YL, Greaves M. Role of coagulation testing in predicting bleeding risk. Hematol J. 2003;4(6):373–8.CrossRefGoogle Scholar
  9. 9.
    Engoren MC, Habib RH, Zacharias A, Schwann TA, Riordan CJ, Durham SJ. Effect of blood transfusion on long-term survival after cardiac operation. Ann Thorac Surg. 2002;74(4):1180–6.CrossRefGoogle Scholar
  10. 10.
    Rao SV, Jollis JG, Harrington RA, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA. 2004;292(13):1555–62.CrossRefGoogle Scholar
  11. 11.
    Spiess BD, Royston D, Levy JH, et al. Platelet transfusions during coronary artery bypass graft surgery are associated with serious adverse outcomes. Transfusion. 2004;44(8):1143–8.CrossRefGoogle Scholar
  12. 12.
    Mikkola R, Gunn J, Heikkinen J, Wistbacka JO, Teittinen K, Kuttila K, et al. Use of blood products and risk of stroke after coronary artery bypass surgery. Blood Transfus. 2012;10(4):490–501.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ghazi L, Schwann TA, Engoren MC, Habib RH. Role of blood transfusion product type and amount in deep vein thrombosis after cardiac surgery. Thromb Res. 2015;136(6):1204–10.CrossRefGoogle Scholar
  14. 14.
    Zbrozek A, Magee G. Cost of bleeding in trauma and complex cardiac surgery. Clin Ther. 2015;37(9):1966–74.CrossRefGoogle Scholar
  15. 15.
    Theusinger OM, Stein P, Levy JH. Point of care and factor concentrate-based coagulation algorithms. Transfus Med Hemother. 2015;42(2):115–21.CrossRefGoogle Scholar
  16. 16.
    Horacek M, Cvachovec K. The effects of cardiopulmonary bypass with hollow fiber membrane oxygenator on blood clotting measured by thromboelastography. Physiol Res. 2002;51(2):145–50.PubMedGoogle Scholar
  17. 17.
    Lee GC, Kicza AM, Liu KY, Nyman CB, Kaufman RM, Body SC. Does rotational thromboelastometry (ROTEM) improve prediction of bleeding after cardiac surgery? Anesth Analg. 2012;115(3):499–506.PubMedGoogle Scholar
  18. 18.
    Welsh KJ, Padilla A, Dasgupta A, Nguyen AN, Wahed A. Thromboelastography is a suboptimal test for determination of the underlying cause of bleeding associated with cardiopulmonary bypass and may not predict a hypercoagulable state. Am J Clin Pathol. 2014;142(4):492–7.CrossRefGoogle Scholar
  19. 19.
    Davidson SJ, McGrowder D, Roughton M, Kelleher AA. Can ROTEM thromboelastometry predict postoperative bleeding after cardiac surgery? J Cardiothorac Vasc Anesth. 2008;22(5):655–61.CrossRefGoogle Scholar
  20. 20.
    McQuilten ZK, Andrianopoulos N, Wood EM, et al. Transfusion practice varies widely in cardiac surgery: results from a national registry. J Thorac Cardiovasc Surg. 2014;147(5):1684–90.CrossRefGoogle Scholar
  21. 21.
    Shander A, Puzio T, Javidroozi M. Variability in transfusion practice and effectiveness of strategies to improve it. J Cardiothorac Vasc Anesth. 2012;26(4):541–4.CrossRefGoogle Scholar
  22. 22.
    Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88(2):312–9.PubMedGoogle Scholar
  23. 23.
    Royston D, von Kier S. Reduced haemostatic factor transfusion using heparinase-modified thrombelastography during cardiopulmonary bypass. Br J Anaesth. 2001;86(4):575–8.CrossRefGoogle Scholar
  24. 24.
    Nuttall GA, Oliver WC, Santrach PJ, Bryant S, Dearani JA, Schaff HV, et al. Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology. 2001;94(5):773–81.CrossRefGoogle Scholar
  25. 25.
    Avidan MS, Alcock EL, Da Fonseca J, et al. Comparison of structured use of routine laboratory tests or near-patient assessment with clinical judgement in the management of bleeding after cardiac surgery. Br J Anaesth. 2004;92(2):178–86.CrossRefGoogle Scholar
  26. 26.
    Anderson L, Quasim I, Soutar R, Steven M, Macfie A, Korte W. An audit of red cell and blood product use after the institution of thromboelastometry in a cardiac intensive care unit. Transfus Med. 2006;16(1):31–9.CrossRefGoogle Scholar
  27. 27.
    Ak K, Isbir CS, Tetik S, et al. Thromboelastography-based transfusion algorithm reduces blood product use after elective CABG: a prospective randomized study. J Card Surg. 2009;24(4):404–10.CrossRefGoogle Scholar
  28. 28.
    Westbrook AJ, Olsen J, Bailey M, Bates J, Scully M, Salamonsen RF. Protocol based on thromboelastograph (TEG) out-performs physician preference using laboratory coagulation tests to guide blood replacement during and after cardiac surgery: a pilot study. Heart Lung Circ. 2009;18(4):277–88.CrossRefGoogle Scholar
  29. 29.
    Girdauskas E, Kempfert J, Kuntze T, et al. Thromboelastometrically guided transfusion protocol during aortic surgery with circulatory arrest: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2010;140(5):1117–24.CrossRefGoogle Scholar
  30. 30.
    Görlinger K, Dirkmann D, Hanke AA, et al. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115(6):1179–91.PubMedGoogle Scholar
  31. 31.
    Weber CF, Goerlinger K, Meininger D, et al. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117(3):531–47.CrossRefGoogle Scholar
  32. 32.
    Fassl J, Matt P, Eckstein F, et al. Transfusion of allogeneic blood products in proximal aortic surgery with hypothermic circulatory arrest: effect of thromboelastometry-guided transfusion management. J Cardiothorac Vasc Anesth. 2013;27(6):1181–8.CrossRefGoogle Scholar
  33. 33.
    Fahrendorff M, Oliveri RS, Johansson PI. The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products – a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2017;25(1):39.CrossRefGoogle Scholar
  34. 34.
    Yildirim F, Tuncer B, Ozbakkaloglu A, Kurdal AT, Ozturk T, Iskesen I. Thromboelastogram reduces blood use by inspecting coagulation in heart surgery. Asian Cardiovasc Thorac Ann. 2016;24(5):441–4.CrossRefGoogle Scholar
  35. 35.
    Spath NB, Lala HM, Robinson SC. Introduction of a simple algorithm improves thromboelastography-guided blood product use during cardiac surgery. Anaesth Intensive Care. 2017;45(1):122–3.CrossRefGoogle Scholar
  36. 36.
    Ranucci M, Baryshnikova E, Pistuddi V, Menicanti L, Frigiola A. Surgical and Clinical Outcome REsearch (SCORE) Group. The effectiveness of 10 years of interventions to control postoperative bleeding in adult cardiac surgery. Interact Cardiovasc Thorac Surg. 2017;24(2):196–202.PubMedGoogle Scholar
  37. 37.
    Karkouti K, Callum J, Wijeysundera DN, et al. Point-of-care hemostatic testing in cardiac surgery: a stepped-wedge clustered randomized controlled trial. Circulation. 2016;134(16):1152–62.CrossRefGoogle Scholar
  38. 38.
    Wasowicz M1, SA MC, Wijeysundera DN, et al. The incremental value of thrombelastography for prediction of excessive blood loss after cardiac surgery: an observational study. Anesth Analg. 2010;111(2):331–8.CrossRefGoogle Scholar
  39. 39.
    Whiting P, Al M, Westwood M, et al. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2015;19(58):1–228.CrossRefGoogle Scholar
  40. 40.
    Serraino GF, Murphy GJ. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: updated systematic review and meta-analysis. Br J Anaesth. 2017;118(6):823–33.CrossRefGoogle Scholar
  41. 41.
    Deppe AC, Weber C, Zimmermann J, et al. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: a meta-analysis of 8332 patients. J Surg Res. 2016;203(2):424–33.CrossRefGoogle Scholar
  42. 42.
    Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev. 2016;(8). Art. No.: CD007871.Google Scholar
  43. 43.
    Bolliger D, Tanaka KA. Roles of thrombelastography and thromboelastometry for patient blood management in cardiac surgery. Transfus Med Rev. 2013;27(4):213–20.CrossRefGoogle Scholar
  44. 44.
    Sartorius D, Waeber JL, Pavlovic G, et al. Goal-directed hemostatic therapy using the rotational thromboelastometry in patients requiring emergent cardiovascular surgery. Ann Card Anaesth. 2014;17:100–8.CrossRefGoogle Scholar
  45. 45.
    Rafiq S, Johansson PI, Kofoed KF, Olsen PS, Steinbrüchel DA. Preoperative hemostatic testing and the risk of postoperative bleeding in coronary artery bypass surgery patients. J Card Surg. 2016;31(9):565–71.CrossRefGoogle Scholar
  46. 46.
    Chitlur M, Sorensen B, Rivard GE, et al. Standardization of thromboelastography: a report from the TEG-ROTEM working group. Haemophilia. 2011;17(3):532–7.CrossRefGoogle Scholar
  47. 47.
    Despotis G, Avidan M, Eby C. Prediction and management of bleeding in cardiac surgery. J Thromb Haemost. 2009;7(Suppl 1):111–7.CrossRefGoogle Scholar
  48. 48.
    O'Neal JB, Shaw AD. Goal-directed therapy: what we know and what we need to know. Perioper Med (Lond). 2015;4(1):1.CrossRefGoogle Scholar
  49. 49.
    Radulovic V, Laffin A, Hansson KM, Backlund E, Baghaei F, Jeppsson A. Heparin and protamine titration does not improve haemostasis after cardiac surgery: a prospective randomized study. PLoS One. 2015;10(7):e0130271.CrossRefGoogle Scholar
  50. 50.
    Meesters MI, Kuiper G, Vonk AB, Loer SA, Boer C. Validation of a point-of-care prothrombin time test after cardiopulmonary bypass in cardiac surgery. Anaesthesia. 2016;71(10):1163–8.CrossRefGoogle Scholar
  51. 51.
    Gauss T, Hamada S, Jurcisin I, et al. Limits of agreement between measures obtained from standard laboratory and the point-of care device Hemochron Signature Elite(R) during acute haemorrhage. Br J Anaesth. 2014;112(3):514–20.CrossRefGoogle Scholar
  52. 52.
    Venema LF, Post WJ, Hendriks HG, et al. An assessment of clinical interchangeability of TEG and RoTEM thromboelastographic variables in cardiac surgical patients. Anesth Analg. 2010;111(2):339–44.CrossRefGoogle Scholar
  53. 53.
    Coakley M, Reddy K, Mackie I, et al. Transfusion triggers in orthotopic liver transplantation: a comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests. J Cardiothorac Vasc Anesth. 2006;20(4):548–53.CrossRefGoogle Scholar
  54. 54.
    Nielsen VG. A comparison of the Thrombelastograph and the ROTEM. Blood Coagul Fibrinolysis. 2007;18(3):247–52.CrossRefGoogle Scholar
  55. 55.
    Jackson GN, Ashpole KJ. Yentis SM: the TEG vs the ROTEM thromboelastography/thromboelastometry systems. Anaesthesia. 2009;64(2):212–5.CrossRefGoogle Scholar
  56. 56.
    Schöchl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55.CrossRefGoogle Scholar
  57. 57.
    Hett DA, Walker D, Pilkington SN, Smith DC. Sonoclot analysis. Br J Anaesth. 1995;75(6):771–6.CrossRefGoogle Scholar
  58. 58.
    Ferrante EA, Blasier KR, Givens TB, Lloyd CA, Fischer TJ, Viola F. A novel device for the evaluation of hemostatic function in critical care settings. Anesth Analg. 2016;123(6):1372–9.CrossRefGoogle Scholar
  59. 59.
    Harvey L, Holley CT, John R. Gastrointestinal bleed after left ventricular assist device implantation: incidence, management, and prevention. Ann Cardiothorac Surg. 2014;3(5):475–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Davis ME, Haglund NA, Tricarico NM, Keebler ME, Maltais S. Development of acquired von Willebrand syndrome during short-term micro axial pump support: implications for bleeding in a patient bridged to a long-term continuous-flow left ventricular assist device. ASAIO J. 2014;60:355–7.CrossRefGoogle Scholar
  61. 61.
    Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009;53(23):2162–7.CrossRefGoogle Scholar
  62. 62.
    Feldmann C, Zayat R, Groetzenich A, et al. Perioperative onset of acquired von Willebrand syndrome: comparison between HVAD, HeartMateII and on-pump coronary bypass surgery. PLoS One. 2017;12(2):e0171029.CrossRefGoogle Scholar
  63. 63.
    Reich HJ, Morgan J, Arabia F, Czer L, Moriguchi J, Ramzy D, Esmailian F, Lam L, Dunhill J, Volod O. Comparative analysis of von Willebrand factor profiles after implantation of left ventricular assist device and total artificial heart. J Thromb Haemost. 2017;15(8):1620–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterLos AngelesUSA
  2. 2.South University OnlineSavannahUSA

Personalised recommendations