Advertisement

Glycemic Control Does Matter in the Cardiac Surgery Patient

  • Stephanie Cha
  • Glenn J. WhitmanEmail author
Chapter
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)

Abstract

Hyperglycemia is a common occurrence in patients undergoing cardiac surgery. Evidence suggests it is associated with increased perioperative mortality and complications. Preoperatively, HbA1c and fasting blood glucose are reliable methods for identifying patients at increased risk for both hyperglycemia and perioperative morbidity. Perioperative glycemic control by insulin therapy provides considerable benefit to cardiac surgery patients at a cellular and clinical level. Optimal target for blood glucose concentrations as well as the optimal protocol for its delivery remains controversial due to wide variability of studied populations, methodology, and outcomes. Review of available literature suggests that moderate glycemic control (100–140 mg/dL, or 140–180 mg/dL) is at least equivalent, if not superior to intensive control (80–110 mg/dL) in patients undergoing cardiac surgery, however, special populations may benefit from intensive control.

Keywords

Hyperglycemia Cardiothoracic surgery Glycemic control Postoperative care 

References

  1. 1.
    Lazar HL. How important is glycemic control during coronary artery bypass? Adv Surg. 2012;46:219–35.CrossRefGoogle Scholar
  2. 2.
    Girish G, Agarwal S, Satsangi DK, Tempe D, Dutta N, Pratap H. Glycemic control in cardiac surgery: rationale and current evidence. Ann Card Anaesth. 2014;17(3):222–8.CrossRefGoogle Scholar
  3. 3.
    Breithaupt T. Postoperative glycemic control in cardiac surgery patients. Proc (Bayl Univ Med Cent). 2010;23(1):79–82.CrossRefGoogle Scholar
  4. 4.
    Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol. 2000;278(4):H1218–24.CrossRefGoogle Scholar
  5. 5.
    Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol. 1998;275(2 Pt 2):H721–5.PubMedGoogle Scholar
  6. 6.
    Kehl F, Krolikowski JG, Mraovic B, Pagel PS, Warltier DC, Kersten JR. Hyperglycemia prevents isoflurane-induced preconditioning against myocardial infarction. Anesthesiology. 2002;96(1):183–8.CrossRefGoogle Scholar
  7. 7.
    Raphael J, Gozal Y, Navot N, Zuo Z. Hyperglycemia inhibits anesthetic-induced postconditioning in the rabbit heart via modulation of phosphatidylinositol-3-kinase/Akt and endothelial nitric oxide synthase signaling. J Cardiovasc Pharmacol. 2010;55(4):348–57.CrossRefGoogle Scholar
  8. 8.
    Verma S, Maitland A, Weisel RD, Li SH, Fedak PW, Pomroy NC, et al. Hyperglycemia exaggerates ischemia-reperfusion-induced cardiomyocyte injury: reversal with endothelin antagonism. J Thorac Cardiovasc Surg. 2002;123(6):1120–4.CrossRefGoogle Scholar
  9. 9.
    Garazi E, Bridge S, Caffarelli A, Ruoss S, Van der Starre P. Acute cellular insulin resistance and hyperglycemia associated with hypophosphatemia after cardiac surgery. A & A Case Rep. 2015;4(2):22–5.CrossRefGoogle Scholar
  10. 10.
    Qu C, Zhang R, Xiang K. Blood glucose control in the perioperative stage of cardiac value replacement influences levels of blood lactic acid. Chin J Tissue Eng Res. 2012;16(53):9955–9.Google Scholar
  11. 11.
    Brown JR, Furnary AP, Mackenzie TA, Duquette D, Helm RE, Paliotta M, et al. Does tight glucose control prevent myocardial injury and inflammation? J Extra-Corpor Technol. 2011;43(3):144–52.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nakamura T, Toda K, Kuratani T, Miyagawa S, Yoshikawa Y, Fukushima S, et al. Diabetes mellitus impairs left ventricular mass regression after surgical or transcatheter aortic valve replacement for severe aortic stenosis. Heart Lung Circ. 2016;25(1):68–74.CrossRefGoogle Scholar
  13. 13.
    Gross ER, LaDisa JF Jr, Weihrauch D, Olson LE, Kress TT, Hettrick DA, et al. Reactive oxygen species modulate coronary wall shear stress and endothelial function during hyperglycemia. Am J Physiol Heart Circ Physiol. 2003;284(5):H1552–9.CrossRefGoogle Scholar
  14. 14.
    Koltai MZ, Hadhazy P, Posa I, Kocsis E, Winkler G, Rosen P, et al. Characteristics of coronary endothelial dysfunction in experimental diabetes. Cardiovasc Res. 1997;34(1):157–63.CrossRefGoogle Scholar
  15. 15.
    Egi M, Shimizu K, Toda Y, Takenouchi S, Morita K. Perioperative glucose variability and oxidative stress in postoperative critically ill patients. Crit Care Med. 2010;38:A69.Google Scholar
  16. 16.
    American Diabetes Association. Erratum. Glycemic targets. Sec. 6. In standards of medical care in diabetes-2017. Diabetes Care. 2017;40(Suppl. 1):S48–56. Diabetes Care. 2017 Jul;40(7):985, er07a. Epub 2017 May 18.CrossRefGoogle Scholar
  17. 17.
    Tennyson C, Lee R, Attia R. Is there a role for HbA1c in predicting mortality and morbidity outcomes after coronary artery bypass graft surgery? Interact Cardiovasc Thorac Surg. 2013;17(6):1000–8.CrossRefGoogle Scholar
  18. 18.
    Halkos ME, Puskas JD, Lattouf OM, Kilgo P, Kerendi F, Song HK, et al. Elevated preoperative hemoglobin A1c level is predictive of adverse events after coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2008;136(3):631–40.CrossRefGoogle Scholar
  19. 19.
    Narayan P, Kshirsagar SN, Mandal CK, Ghorai PA, Rao YM, Das D, et al. Preoperative glycosylated hemoglobin: a risk factor for patients undergoing coronary artery bypass. Ann Thorac Surg. 2017;104:606–12.CrossRefGoogle Scholar
  20. 20.
    Jneid H, Anderson JL, Wright RS, Adams CD, Bridges CR, Casey DE Jr, et al. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2012;60(7):645–81.CrossRefGoogle Scholar
  21. 21.
    How-to guide: prevent surgical site infections [Internet]. 2012. Available from: www.ihi.org.
  22. 22.
    Zindrou D, Taylor KM, Bagger JP. Admission plasma glucose: an independent risk factor in nondiabetic women after coronary artery bypass grafting. Diabetes Care. 2001;24(9):1634–9.CrossRefGoogle Scholar
  23. 23.
    Thiele RH, Hucklenbruch C, Ma JZ, Colquhoun D, Zuo Z, Nemergut EC, et al. Admission hyperglycemia is associated with poor outcome after emergent coronary bypass grafting surgery. J Crit Care. 2015;30(6):1210–6.CrossRefGoogle Scholar
  24. 24.
    Title LM, Cummings PM, Giddens K, Nassar BA. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36(7):2185–91.CrossRefGoogle Scholar
  25. 25.
    Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97(17):1695–701.CrossRefGoogle Scholar
  26. 26.
    Oliver MF. Fatty acids and the risk of death during acute myocardial ischaemia. Clin Sci (Lond). 2015;128(6):349–55.CrossRefGoogle Scholar
  27. 27.
    Davi G, Catalano I, Averna M, Notarbartolo A, Strano A, Ciabattoni G, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med. 1990;322(25):1769–74.CrossRefGoogle Scholar
  28. 28.
    Marfella R, Esposito K, Giunta R, Coppola G, De Angelis L, Farzati B, et al. Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation. 2000;101(19):2247–51.CrossRefGoogle Scholar
  29. 29.
    Doenst T, Wijeysundera D, Karkouti K, Zechner C, Maganti M, Rao V, et al. Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2005;130(4):1144.CrossRefGoogle Scholar
  30. 30.
    Gandhi GY, Nuttall GA, Abel MD, Mullany CJ, Schaff HV, Williams BA, et al. Intraoperative hyperglycemia and perioperative outcomes in cardiac surgery patients. Mayo Clin Proc. 2005;80(7):862–6.CrossRefGoogle Scholar
  31. 31.
    Fish LH, Weaver TW, Moore AL, Steel LG. Value of postoperative blood glucose in predicting complications and length of stay after coronary artery bypass grafting. Am J Cardiol. 2003;92(1):74–6.CrossRefGoogle Scholar
  32. 32.
    Frioud A, Comte-Perret S, Nguyen S, Berger MM, Ruchat P, Ruiz J. Blood glucose level on postoperative day 1 is predictive of adverse outcomes after cardiovascular surgery. Diabetes Metab. 2010;36(1):36–42.CrossRefGoogle Scholar
  33. 33.
    Giakoumidakis K, Nenekidis I, Brokalaki H. The correlation between peri-operative hyperglycemia and mortality in cardiac surgery patients: a systematic review. Eur J Cardiovasc Nurs. 2012;11(1):105–13.CrossRefGoogle Scholar
  34. 34.
    van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.CrossRefGoogle Scholar
  35. 35.
    Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.CrossRefGoogle Scholar
  36. 36.
    NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367(12):1108–18.CrossRefGoogle Scholar
  37. 37.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.CrossRefGoogle Scholar
  38. 38.
    Preiser JC, Devos P, Ruiz-Santana S, Melot C, Annane D, Groeneveld J, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738–48.CrossRefGoogle Scholar
  39. 39.
    Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40(12):3251–76.CrossRefGoogle Scholar
  40. 40.
    Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Endocr Pract. 2009;15(4):353–69.CrossRefGoogle Scholar
  41. 41.
    Lazar HL, Philippides G, Fitzgerald C, Lancaster D, Shemin RJ, Apstein C. Glucose-insulin-potassium solutions enhance recovery after urgent coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1997;113(2):354,60; discussion 360–2.CrossRefGoogle Scholar
  42. 42.
    Hasegawa A, Iwasaka H, Hagiwara S, Koga H, Hasegawa R, Kudo K, et al. Anti-inflammatory effects of perioperative intensive insulin therapy during cardiac surgery with cardiopulmonary bypass. Surg Today. 2011;41(10):1385–90.CrossRefGoogle Scholar
  43. 43.
    Lazar HL, Chipkin SR, Fitzgerald CA, Bao Y, Cabral H, Apstein CS. Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation. 2004;109(12):1497–502.CrossRefGoogle Scholar
  44. 44.
    Furnary AP, Gao G, Grunkemeier GL, Wu Y, Zerr KJ, Bookin SO, et al. Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003;125(5):1007–21.CrossRefGoogle Scholar
  45. 45.
    Furnary AP, Wu Y, Bookin SO. Effect of hyperglycemia and continuous intravenous insulin infusions on outcomes of cardiac surgical procedures: the Portland Diabetic Project. Endocr Pract. 2004;10(Suppl 2):21–33.CrossRefGoogle Scholar
  46. 46.
    D’Alessandro C, Leprince P, Golmard JL, Ouattara A, Aubert S, Pavie A, et al. Strict glycemic control reduces EuroSCORE expected mortality in diabetic patients undergoing myocardial revascularization. J Thorac Cardiovasc Surg. 2007;134(1):29–37.CrossRefGoogle Scholar
  47. 47.
    Caroleo S, Onorati F, Rubino A, Calandese F, De Munda C, Renzulli A, et al. Intensive versus conventional insulinotherapy after elective and on-pump myocardial revascularization: a prospective and randomized study. Intensive Care Med. 2009;35:S107.Google Scholar
  48. 48.
    Asida SM, Atalla MM, Gad GS, Eisa KM, Mohamed HS. Effect of perioperative control of blood glucose level on patient’s outcome after anesthesia for cardiac surgery. Egypt J Anaesth. 2013;29(1):71–6.CrossRefGoogle Scholar
  49. 49.
    Giakoumidakis K, Eltheni R, Patelarou E, Theologou S, Patris V, Michopanou N, et al. Effects of intensive glycemic control on outcomes of cardiac surgery. Heart Lung. 2013;42(2):146–51.CrossRefGoogle Scholar
  50. 50.
    Song B, Jiang P, Wang Z. Clinical effects of strict control versus conventional control of blood glucose on perioperative cardiac surgery: a meta-analysis. Chin J Evid Based Med. 2012;12(10):1229–34.Google Scholar
  51. 51.
    Kurnaz P, Sungur Z, Camci E, Sivrikoz N, Orhun G, Senturk M, et al. The effect of two different glycemic management protocols on postoperative cognitive dysfunction in coronary artery bypass surgery. Bras J Anestesiol. 2017 2017/05;67(3):258–65.CrossRefGoogle Scholar
  52. 52.
    Wahby EA, Abo Elnasr MM, Eissa MI, Mahmoud SM. Perioperative glycemic control in diabetic patients undergoing coronary artery bypass graft surgery. J Egypt Soc Cardio-Thorac Surg. 2016 2016/08;24(2):143–9.CrossRefGoogle Scholar
  53. 53.
    Gandhi GY, Nuttall GA, Abel MD, Mullany CJ, Schaff HV, O’Brien PC, et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146(4):233–43.CrossRefGoogle Scholar
  54. 54.
    Bhamidipati CM, LaPar DJ, Mehta GS, Kern JA, Kron IL, Ailawadi G. Tight glucose control is not superior to permissive hyperglycemia following valve surgery. J Am Coll Cardiol. 2011 2011/04;57(14):E1394.CrossRefGoogle Scholar
  55. 55.
    Bhamidipati CM, LaPar DJ, Stukenborg GJ, Morrison CC, Kern JA, Kron IL, et al. Superiority of moderate control of hyperglycemia to tight control in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2011;141(2):543–51.CrossRefGoogle Scholar
  56. 56.
    Umpierrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M, et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care. 2015;38(9):1665–72.CrossRefGoogle Scholar
  57. 57.
    Mulla I, Schmidt K, Cashy J, Wallia A, Oakes DJ, Andrei A-, et al. Comparison of glycemic and surgical outcomes in cardiac surgery patients after change in glycemic targets. Diabetes. 2014;63:A233.Google Scholar
  58. 58.
    Liou HL, Shih CC, Chung KC, Chen HI. Comparison of the effect of intensive versus conventional insulinotherapy in patients with cardiac surgery after cardiopulmonary bypass. Chin J Physiol. 2013;56(2):101–9.PubMedGoogle Scholar
  59. 59.
    McDonnell ME, Alexanian SM, Junqueira A, Cabral H, Lazar HL. Relevance of the Surgical Care Improvement Project on glycemic control in patients undergoing cardiac surgery who receive continuous insulin infusions. J Thorac Cardiovasc Surg. 2013;145(2):590,4; discussion 595–7.CrossRefGoogle Scholar
  60. 60.
    Leibowitz G, Raizman E, Brezis M, Glaser B, Raz I, Shapira O. Effects of moderate intensity glycemic control after cardiac surgery. Ann Thorac Surg. 2010;90(6):1825–32.CrossRefGoogle Scholar
  61. 61.
    Greco G, Ferket BS, D’Alessandro DA, Shi W, Horvath KA, Rosen A, et al. Diabetes and the association of postoperative hyperglycemia with clinical and economic outcomes in cardiac surgery. Diabetes Care. 2016;39(3):408–17.CrossRefGoogle Scholar
  62. 62.
    Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, et al. The Society of Thoracic Surgeons practice guideline series: blood glucose management during adult cardiac surgery. Ann Thorac Surg. 2009;87(2):663–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations