Advertisement

Clearance of Pulmonary Secretions After Lung Transplantation

  • Christopher H. WigfieldEmail author
  • Ankeeta Mehta
  • Charles Alex
Chapter
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)

Abstract

Lung transplantation is a well established treatment option for selected patients with endstage pulmonary diseases (Weill et al., J Heart Lung Transplant. 2015;34(1):1–15). Bronchial and pulmonary secretions after lung transplantation are a common cause of post-operative morbidity for recipients (Duarte and Lick, Chest Surg Clin N Am. 2002;12(2):397–416). Their clinical impact may frequently be underestimated and this can lead to significant complications. Consequently, patients may experience potential delays in their overall recovery after lung transplantation. As outcomes after lung transplantation have significantly improved over the last decade, this complex therapeutic strategy has become more prevalent (Chambers et al., J Heart Lung Transplant. 2017;36:1047–1059). With increasing clinical encounters with these challenging patients, it is essential for critical care physicians and allied providers to have applied knowledge and adequate skill sets to support lung recipients during the recovery. This is particularly important in the immediate post-operative phase and crucial after extubation. This review defines such pulmonary secretions and the pathophysiology involved. We provide a review of the applicable evidence available in this context.

Keywords

Lung transplantation Pulmonary secretions Bronchial clearance Critical care 

References

  1. 1.
    Weill D, Benden C, Corris PA, et al. A consensus document for the selection of lung transplant candidates: 2014 – an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2015;34(1):1–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Duarte AG, Lick S. Perioperative care of the lung transplant patient. Chest Surg Clin N Am. 2002;12(2):397–416.PubMedCrossRefGoogle Scholar
  3. 3.
    Chambers DC, Yusen RD, Cherilch WS, et al. The Registry of the International Society of Heart and Lung Transplantation: Thirty-fourth Adult Lung and Heart-lung transplantation report – 2017; focus theme: Allograft ischemia time. J Heart Lung Transplant. 2017;36:1047–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Riou B, Guesde R, Jacquens Y, Duranteau R, Viars P. Fiberoptic bronchoscopy in brain-dead organ donors. Am J Respir Crit Care Med. 1994;150(2):558–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Avlonitis VS, Krause A, Luzzi L, et al. Bacterial colonization of the donor lower airways is a predictor of poor outcome in lung transplantation. Eur J Cardiothorac Surg. 2003;24(4):601–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Ruiz I, Gavalda J, Monforte V, et al. Donor-to-host transmission of bacterial and fungal infections in lung transplantation. Am J Transplant. 2006;6(1):178–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Botha P, Fisher AJ, Dark JH. Marginal lung donors: a diminishing margin of safety? Transplantation. 2006;82(10):1273–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Bellon H, Vandermeulen E, Verleden SE, et al. The effect of immunosuppression on airway integrity. Transplantation. 2017;101(12):2855–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Herve P, Silbert D, Cerrina J, Simonneau G, Dartevelle P, The Paris-Sud Lung Transplant Group. Impairment of bronchial mucociliary clearance in long-term survivors of heart/lung and double-lung transplantation. Chest. 1993;103(1):59–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Higenbottam T, Jackson M, Woolman P, Lowry R, Wallwork J. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients. Am Rev Respir Dis. 1989;140(1):58–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Duarte AG, Terminella L, Smith JT, Myers AC, Campbell G, Lick S. Restoration of cough reflex in lung transplant recipients. Chest. 2008;134(2):310–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Canning BJ, Mori N, Mazzone SB. Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol. 2006;152(3):223–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Iber C, Simon P, Skatrud JB, Mahowald MW, Dempsey JA. The Breuer-Hering reflex in humans. Effects of pulmonary denervation and hypocapnia. Am J Respir Crit Care Med. 1995;152(1):217–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Brody JS, Klempfner G, Staum MM, Vidyasagar D, Kuhl DE, Waldhausen JA. Mucociliary clearance after lung denervation and bronchial transection. J Appl Physiol. 1972;32(2):160–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Nadel JA. Autonomic control of airway smooth muscle and airway secretions. Am Rev Respir Dis. 1977;115(6 Pt 2):117–26.PubMedGoogle Scholar
  16. 16.
    Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pintucci JP, Corno S, Garotta M. Biofilms and infections of the upper respiratory tract. Eur Rev Med Pharmacol Sci. 2010;14(8):683–90.PubMedGoogle Scholar
  18. 18.
    Lee AL, Burge AT, Holland AE. Airway clearance techniques for bronchiectasis. Cochrane Database Syst Rev. 2015;11:CD008351.Google Scholar
  19. 19.
    Baumann B, Byers S, Wasserman-Wincko T, et al. Postoperative swallowing assessment after lung transplantation. Ann Thorac Surg. 2017;104(1):308–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang C, Esquinas A, Mina B. Evaluation of cough peak expiratory flow as a predictor of successful mechanical ventilation discontinuation: a narrative review of the literature. J Intensive Care. 2017;5:33.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rose L, Adhikari NK, Leasa D, Fergusson DA, McKim D. Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation. Cochrane Database Syst Rev. 2017;1:CD011833.PubMedGoogle Scholar
  22. 22.
    Wanner A. Does chest physical therapy move airway secretions? Am Rev Respir Dis. 1984;130(5):701–2.PubMedGoogle Scholar
  23. 23.
    Warnock L, Gates A. Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis. Cochrane Database Syst Rev. 2015;12:CD001401.Google Scholar
  24. 24.
    Raidal SL, Love DN, Bailey GD. Effects of posture and accumulated airway secretions on tracheal mucociliary transport in the horse. Aust Vet J. 1996;73(2):45–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Narayanan AL, Hamid SR, Supriyanto E. Evidence regarding patient compliance with incentive spirometry interventions after cardiac, thoracic and abdominal surgeries: a systematic literature review. Can J Respir Ther. 2016;52(1):17–26.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Freitas ER, Soares BG, Cardoso JR, Atallah AN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2007;3:CD004466.Google Scholar
  27. 27.
    Langenderfer B. Alternatives to percussion and postural drainage. A review of mucus clearance therapies: percussion and postural drainage, autogenic drainage, positive expiratory pressure, flutter valve, intrapulmonary percussive ventilation, and high-frequency chest compression with the ThAIRapy Vest. J Cardpulm Rehabil. 1998;18(4):283–9.CrossRefGoogle Scholar
  28. 28.
    Konstan MW, Stern RC, Doershuk CF. Efficacy of the flutter device for airway mucus clearance in patients with cystic fibrosis. J Pediatr. 1994;124(5 Pt 1):689–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Sathe NA, Krishnaswami S, Andrews J, Ficzere C, McPheeters ML. Pharmacologic agents that promote airway clearance in hospitalized subjects: a systematic review. Respir Care. 2015;60(7):1061–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Wark PA, McDonald V. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev. 2003;1:CD001506.Google Scholar
  31. 31.
    Bennett WD, Wu J, Fuller F, et al. Duration of action of hypertonic saline on mucociliary clearance in the normal lung. J Appl Physiol. 2015;118(12):1483–90.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Safdar A, Shelburne SA, Evans SE, Dickey BF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf. 2009;8(4):435–49.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Henderson AG, Ehre C, Button B, et al. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest. 2014;124(7):3047–60.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Puchelle E, Zahm JM, de Bentzmann S, et al. Effects of rhDNase on purulent airway secretions in chronic bronchitis. Eur Respir J. 1996;9(4):765–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang C, Chilvers M, Montgomery M, Nolan SJ. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2016;4:CD001127.PubMedGoogle Scholar
  36. 36.
    Hardy KA, Anderson BD. Noninvasive clearance of airway secretions. Respir Care Clin N Am. 1996;2(2):323–45.PubMedGoogle Scholar
  37. 37.
    Sivasothy P, Brown L, Smith IE, Shneerson JM. Effect of manually assisted cough and mechanical insufflation on cough flow of normal subjects, patients with chronic obstructive pulmonary disease (COPD), and patients with respiratory muscle weakness. Thorax. 2001;56(6):438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Branson RD. Secretion management in the mechanically ventilated patient. Respir Care. 2007;52(10):1328–42. discussion 1342–1327PubMedGoogle Scholar
  39. 39.
    Freytag CC, Thies FL, König W, Welte T. Prolonged application of closed in-line suction catheters increases microbial colonization of the lower respiratory tract and bacterial growth on catheter surface. Infection. 2003;31(1):31–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Mahata D, Nag A, Mandal SM, Nando GB. Antibacterial coating on in-line suction respiratory catheter to inhibit the bacterial biofilm formation using renewable cardanyl methacrylate copolymer. J Biomater Sci Polym Ed. 2017;28(4):365–79.PubMedCrossRefGoogle Scholar
  41. 41.
    Panchabhai TS, Mukhopadhyay S, Sehgal S, Bandyopadhyay D, Erzurum SC, Mehta AC. Plugs of the air passages: a clinicopathologic review. Chest. 2016;150(5):1141–57.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Høiby N, Ciofu O, Johansen HK, et al. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3(2):55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wimberley N, Faling LJ, Bartlett JG. A fiberoptic bronchoscopy technique to obtain uncontaminated lower airway secretions for bacterial culture. Am Rev Respir Dis. 1979;119(3):337–43.PubMedGoogle Scholar
  44. 44.
    Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57(3):212–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mizgerd JP. Acute lower respiratory tract infection. N Engl J Med. 2008;358(7):716–27.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christopher H. Wigfield
    • 1
    Email author
  • Ankeeta Mehta
    • 1
  • Charles Alex
    • 1
  1. 1.Lung Transplant Program, Advocate Health Care ChicagoChrist Medical CenterOak LawnUSA

Personalised recommendations