Severe Hypertension After Cardiac Transplantation
Abstract
The development of hypertension after cardiac transplantation is considered one of its most common comorbidities; it occurs early after transplant and can be difficult to manage. The development of hypertensive urgency or emergency perioperatively warrants expeditious assessment and management in an effort to evade the sequelae of uncontrolled acute postoperative hypertension. Such sequelae may include hemorrhage, disruption of vascular or cardiac suture lines, failure of anastomoses, cardiac arrhythmia, hyperperfusion syndrome, cerebral edema or ischemia, bleeding at the surgical site, and end organ damage. Blood pressure should be monitored continuously and short-acting intravenous antihypertensive agents should be administered to target a MAP generally within ±20% of the patient’s baseline value once alternative causes for postoperative hypertension are mitigated. An intravenous calcium channel blocker such as nicardipine or clevidipine or sodium nitroprusside with or without nitroglycerin can safely and effectively lower MAP to the desired range. The use of intravenous fenoldopam is a reasonable alternative in patients with or at risk for renal dysfunction.
Keywords
Severe hypertension Heart transplant Hypertension treatment Post-operative morbidity Cardiac surgeryReferences
- 1.Lund LH, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report – 2013; focus theme: age. J Heart Lung Transplant. 2013;32:951–64.PubMedCrossRefGoogle Scholar
- 2.Ozdogan E, Banner N, Fitzgerald M, et al. Factors influencing the development of hypertension after heart transplantation. J Heart Transplant. 1990;9:548–53.PubMedGoogle Scholar
- 3.Estafanous FG, Tarazi RC. Systemic arterial hypertension associated with cardiac surgery. Am J Cardiol. 1980;46:685–94.PubMedCrossRefGoogle Scholar
- 4.Cooper TJ, Clutton-Brock TH, Jones SN, et al. Factors relating to the development of hypertension after cardiopulmonary bypass. Br Heart J. 1985;54:91–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206–52.PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
- 7.Bove EL, Fry WJ, Gross WS, et al. Hypotension and hypertension as consequences of baroreceptor dysfunction following carotid endarterectomy. Surgery. 1979;85:633–7.PubMedGoogle Scholar
- 8.Coutts SB, Hill MD, Hu WY, for the Calgary Stroke Program, et al. Hyperperfusion syndrome: toward a stricter definition. Neurosurgery. 2003;53:1053.PubMedCrossRefGoogle Scholar
- 9.Bouri S, Thapar A, Shalhoub J, et al. Hypertension and the post-carotid endarterectomy cerebral hyperperfusion syndrome. Eur J Vasc Endovasc Surg. 2011;41:229–37.PubMedCrossRefGoogle Scholar
- 10.Massaro AR, Dutra AP, Almeida DR, et al. Transcranial Doppler assessment of cerebral blood flow: effect of cardiac transplantation. Neurology. 2006;66:124–6.PubMedCrossRefGoogle Scholar
- 11.Basali A, Mascha EJ, Kalfas I, et al. Relation between perioperative hypertension and intracranial hemorrhage after craniotomy. Anesthesiology. 2000;93:48–54.PubMedCrossRefGoogle Scholar
- 12.Smirl JD, Haykowsky MJ, Nelson MD, et al. Relationship between cerebral blood flow and blood pressure in long-term heart transplant recipients. Hypertension. 2014;64:1314–20.PubMedCrossRefGoogle Scholar
- 13.Fremes SE, Weisel RD, Baird RJ, et al. Effects of postoperative hypertension and its treatment. J Thorac Cardiovasc Surg. 1983;86:47–56.PubMedGoogle Scholar
- 14.Haas CE, LeBlanc JM. Acute postoperative hypertension: a review of therapeutic options. Am J Health Syst Pharm. 2004;61:1661–75.PubMedGoogle Scholar
- 15.Wallach R, Karp RB, Reves JG, et al. Pathogenesis of paroxysmal hypertension developing during and after coronary artery bypass surgery: a study of hemodynamic and humoral factors. Am J Cardiol. 1980;46:559–65.PubMedCrossRefGoogle Scholar
- 16.Breslow MJ, Jordan DA, Christopherson R, et al. Epidural morphine decreases postoperative hypertension by attenuating sympathetic nervous system hyperactivity. JAMA. 1989;261:3577–81.PubMedCrossRefGoogle Scholar
- 17.Olsen KS, Pedersen CB, Madsen JB, et al. Vasoactive modulators during and after craniotomy: relation to postoperative hypertension. J Neurosurg Anesthesiol. 2002;14:171–9.PubMedCrossRefGoogle Scholar
- 18.Mancia G, Donald D. Demonstration that atria, ventricles and lungs each are responsible for a tonic inhibition of the vasomotor center in the dog. Circ Res. 1975;36:310–8.PubMedCrossRefGoogle Scholar
- 19.Mohanty PK, Thames MD, Arrowood J, Sowers JR, McNamara C, Szentpetry S. Impairment of cardiopulmonary baroreflex following cardiac transplantation in humans. Circulation. 1987;75:914–21.PubMedCrossRefGoogle Scholar
- 20.Starling RC, Cody RJ. Cardiac transplant hypertension. Am J Cardiol. 1990;65:106–11.PubMedCrossRefGoogle Scholar
- 21.Reeves RA, Saphiro AP, Thompson ME, Johnsen AM. Loss of nocturnal decline in blood pressure after cardiac transplantation. Circulation. 1986;73:401–8.PubMedCrossRefGoogle Scholar
- 22.Braith RW, Mills RM, Wilcox CS, et al. Fluid homeostasis after heart transplantation: the role of cardiac denervation. J Heart Lung Transplant. 1996;15:872–80.PubMedGoogle Scholar
- 23.Frohlich ED, Ventura HO, Oschner JL. Arterial hypertension after orthotopic cardiac transplantation. J Am Coll Cardiol. 1990;15:1102–3.PubMedCrossRefGoogle Scholar
- 24.Bennett WM, Porter GA. Cyclosporine-associated hypertension. Am J Med. 1988;85:131–3.PubMedCrossRefGoogle Scholar
- 25.Pham SM, Kormos RL, Kawai A, Murali S, Hattler BG, Demetris AJ, Griffith BP. Tacrolimus (FK 506) in clinical cardiac transplantation: a five-year experience. Transplant Proc. 1996;28:1002–4.PubMedGoogle Scholar
- 26.Scherrer U, Vissing S, Morgan B, et al. Cyclosporine-induced sympathetic activation and hypertension after heart transplantation. N Engl J Med. 1990;323:693–9.PubMedCrossRefGoogle Scholar
- 27.Parry G, Meiser B, Rabago G. The clinical impact of cyclosporine nephrotoxicity in heart transplantation. Transplantation. 2000;69:SS23–6.PubMedCrossRefGoogle Scholar
- 28.Bossaller C, Forstermann U, Hertel R, Olbricht C, Reschle V, Fleck E. Cyclosporin A inhibits endothelium-dependent vasodilation and vascular prostacyclin production. Eur J Pharmacol. 1989;165:165–9.PubMedCrossRefGoogle Scholar
- 29.Ventura HO, Malik FS, Mehra MR, Stapleton DD, Smart FW. Mechanisms of hypertension in cardiac transplantation and the role of cyclosporine. Curr Opin Cardiol. 1997;12:375–81.PubMedCrossRefGoogle Scholar
- 30.Radermacher J, Meiners M, Bramlage C, Kliem V, Behrend M, Schlitt HJ, Pichlmayr R, Koch KM, Brunkhorst R. Pronounced renal vasoconstriction and systemic hypertension in renal transplant patients treated with cyclosporine A versus FK 506. Transpl Int. 1998;11:3–10.PubMedCrossRefGoogle Scholar
- 31.Costanzo MR, Dipchand A, Starling R, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.PubMedCrossRefGoogle Scholar
- 32.Lindenfeld J, Page RL, Zolty R, et al. Drug therapy in the heart transplant recipient: part III: common medical problems. Circulation. 2005;111:113–7.PubMedCrossRefGoogle Scholar
- 33.Sanchez-Lazaro IJ, Martinez-Dolz L, Almenar-Bonet L, et al. Predictor factors for the development of arterial hypertension following heart transplantation. Clin Transpl. 2008;22:760–4.CrossRefGoogle Scholar
- 34.Walker AH, Locke TJ, Braidley PC, Al-Mohammed A. The importance of 24 hour ambulatory blood pressure monitoring after thoracic organ transplantation. J Heart Lung Transplant. 2005;24:1770–3.PubMedCrossRefGoogle Scholar
- 35.Brozena SC, Johnson MR, Ventura H, et al. Effectiveness and safety of diltiazem or lisinopril in treatment of hypertension after heart transplantation. Results of a prospective, randomized multicenter trail. J Am Coll Cardiol. 1996;27:1707–12.PubMedCrossRefGoogle Scholar
- 36.Prys-Roberts C, Meloche R, Foex P. Studies of anesthesia in relation to hypertension. I: cardiovascular responses of treated and untreated patients. Br J Anesth. 1971;43:122–37.CrossRefGoogle Scholar
- 37.Gold JP, Charlson ME, Williams-Russo P, et al. Improvement of outcomes after coronary artery bypass: a randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302–14.PubMedCrossRefGoogle Scholar
- 38.Immink RF, van den Born B-JH, van Montfrans GA, et al. Impaired cerebral autoregulation in patients with malignant hypertension. Circulation. 2004;110:2241–5.PubMedCrossRefGoogle Scholar
- 39.Perez MI, Musini VM. Pharmacological interventions for hypertensive emergencies: a Cochrane systematic review. J Hum Hypertens. 2008;22:596–607.PubMedCrossRefGoogle Scholar
- 40.Cruise CJ, Skrobik Y, Webster RE, et al. Intravenous labetalol versus sodium nitroprusside for treatment of hypertension postcoronary bypass surgery. Anesthesiology. 1989;71:835–9.PubMedCrossRefGoogle Scholar
- 41.Sladen RN, Klamerus KJ, Swafford MW, et al. Labetalol for the control of elevated blood pressure following coronary artery bypass grafting. J Cardiothorac Anesth. 1990;4:210–21.PubMedCrossRefGoogle Scholar
- 42.Paraviainen I, Ruokonen E, Takala J. Sodium nitroprusside after cardiac surgery: systemic and splanchnic blood flow and oxygen transport. Acta Anaesthesiol Scand. 1996;40:606–11.CrossRefGoogle Scholar
- 43.Goldman L, Caldera DL. Risks of general anesthesia and elective operative in the hypertensive patient. Anesthesiology. 1979;50:285–92.PubMedCrossRefGoogle Scholar
- 44.Harrison DG, Florentine MS, Brooks LA, et al. The effect of hypertension and left ventricular hypertrophy on the lower range of coronary autoregulation. Circulation. 1988;77:1108–15.PubMedCrossRefGoogle Scholar
- 45.Elliot WJ, Weber RR, Nelson KS, et al. Renal and hemodynamic effects of intravenous fenoldopam versus nitroprusside in severe hypertension. Circulation. 1990;81:970–7.CrossRefGoogle Scholar
- 46.Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesth Analg. 1995;81:236–42.PubMedGoogle Scholar
- 47.Geniton DJ. A comparison of the hemodynamic effects of labetalol and sodium nitroprusside in patients undergoing carotid endarterectomy. J Am Assoc Nurse Anesth. 1990;58:281–7.Google Scholar
- 48.Halpern NA, Goldberg M, Neely C, et al. Postoperative hypertension: a multicenter, prospective, randomized comparison between intravenous nicardipine and sodium nitroprusside. Crit Care Med. 1992;20:1637–43.PubMedCrossRefGoogle Scholar
- 49.Van Wezel HB, Koolen JJ, Visser CA, et al. Antihypertensive and anti-ischemic effects of nicardipine and nitroprusside in patients undergoing coronary artery bypass grafting. Am J Cardiol. 1989;64:H22–7.CrossRefGoogle Scholar
- 50.Fremes SE, Weisel RD, Mickle DA, et al. A comparison of nitroglycerin and nitroprusside: I. Treatment of postoperative hypertension. Ann Thorac Surg. 1985;39:53–60.PubMedCrossRefGoogle Scholar
- 51.Flaherty JT, Magee PA, Gardner TL, et al. Comparison of intravenous nitroglycerin and sodium nitroprusside for treatment of acute hypertension developing after coronary artery bypass surgery. Circulation. 1982;65:1072–7.PubMedCrossRefGoogle Scholar
- 52.Kieler-Jensen N, Houltz E, Milocco I, et al. Central hemodynamics and right ventricular function after coronary artery bypass surgery. A comparison of prostacyclin, sodium nitroprusside and nitroglycerin for treatment of postcardiac surgery hypertension. J Cardiothorac Vasc Anesth. 1993;7:555–9.PubMedCrossRefGoogle Scholar
- 53.Padilla Ramos A, Varon J. Current and newer agents for hypertensive emergencies. Curr Hypertens Rep. 2014;16:450.PubMedCrossRefGoogle Scholar
- 54.Shusterman NH, Elliott WJ, White WB. Fenoldopam, but not nitroprusside, improves renal function in severely hypertensive patients with impaired renal function. Am J Med. 1993;95:161–8.PubMedCrossRefGoogle Scholar
- 55.Panacek EA, Bednarczyk EM, Dunbar LM, for the Fenoldopam Study Group, et al. Randomized, prospective trial of fenoldopam vs sodium nitroprusside in the treatment of acute severe hypertension. Acad Emerg Med. 1995;2:959–65.PubMedCrossRefGoogle Scholar
- 56.Packer M, Meller J, Medina N, et al. Rebound hemodynamic events after the abrupt withdrawal of nitroprusside in patients with severe chronic heart failure. N Engl J Med. 1979;301:1193–7.PubMedCrossRefGoogle Scholar
- 57.Cheung AT, Cruz-Schiavone GE, Meng QC, et al. Cardiopulmonary bypass has the potential to accelerate the risk of nitroprusside-induced cyanide toxicity. Anesthesiology. 2004;101:A–282.Google Scholar
- 58.Patel CB, Laboy V, Venus B, et al. Use of sodium nitroprusside in post-coronary bypass surgery: a plea for conservatism. Chest. 1986;89:663–7.PubMedCrossRefGoogle Scholar
- 59.Robin ED, McCauley RM. Nitroprusside-related cyanide poisoning: time (long past due) for urgent, effective interventions. Chest. 1992;102:1842–5.PubMedCrossRefGoogle Scholar
- 60.Hogenson KD. Acute postoperative hypertension in the hypertensive patient. J Post Anesth Nurs. 1992;7:38–44.PubMedGoogle Scholar
- 61.McCloskey G. Termination of cardiopulmonary bypass and postbypass hemodynamic management. In: Estafanous FG, Barash PG, Reves JG, editors. Cardiac anesthesia. Principles and clinical practice. 2nd ed. Philadelphia: Lippincott, Williams & Wilkins; 2001. p. 447–64.Google Scholar
- 62.Estafanous FG. Hypertension in the surgical patient: management of blood pressure and anesthesia. Cleve Clin J Med. 1989;56:385–93.PubMedCrossRefGoogle Scholar
- 63.Katzung BG, Chatterjee K. Vasodilators and the treatment of angina pectoris. In: Katzung BG, editor. Basic and clinical pharmacology. 7th ed. Hartford: Appleton & Lange; 1998. p. 179–96.Google Scholar
- 64.IV Nicardipine Study Group. Efficacy and safety of intravenous nicardipine in the control of postoperative hypertension. Chest. 1991;99:393–8.CrossRefGoogle Scholar
- 65.Halpern NA, Sladen RN, Goldberg JS, et al. Nicardipine infusion for postoperative hypertension after surgery of the head and neck. Crit Care Med. 1990;18:950–5.PubMedCrossRefGoogle Scholar
- 66.David D, Dubois C, Loria Y. Comparison of nicardipine and sodium nitroprusside in the treatment of paroxysmal hypertension following aortocoronary bypass surgery. J Cardiothorac Vasc Anesth. 1991;5:357–61.PubMedCrossRefGoogle Scholar
- 67.Vecht RJ, Swanson KT, Nicolaides EP, et al. Comparison of intravenous nicardipine and nitroglycerin to control systemic hypertension after coronary artery bypass grafting. Am J Cardiol. 1989;64(suppl):H19–21.CrossRefGoogle Scholar
- 68.Vincent JL, Berlot G, Preiser JC, et al. Intravenous nicardipine in the treatment of postoperative arterial hypertension. J Cardiothorac Vasc Anesth. 1997;11:160–4.PubMedCrossRefGoogle Scholar
- 69.Goldberg ME, Clark S, Joseph J, et al. Nicardipine versus placebo for the treatment of postoperative hypertension. Am Heart J. 1990;119:446–50.PubMedCrossRefGoogle Scholar
- 70.Cheung AT, Guvakov DV, Weiss SJ, et al. Nicardipine intravenous bolus dosing for acutely decreasing arterial blood pressure during general anesthesia for cardiac operations: pharmacokinetics, pharmacodynamics, and associated effects on left ventricular function. Anesth Analg. 1999;89:1116–23.PubMedCrossRefGoogle Scholar
- 71.Dorman TA, Thompson D, Breslow MJ, et al. Nicardipine versus nitroprusside for breakthrough hypertension following carotid endarterectomy. J Clin Anesth. 2001;13:16–9.PubMedCrossRefGoogle Scholar
- 72.Ericsson H, Fakt C, Höglund L, Jolin-Mellgard A, Nordlander M, Sunzel M, Regardh CG. Pharmacokinetics and pharmacodynamics of clevidipine in healthy volunteers after intravenous infusion. Eur J Clin Pharmacol. 1999;55:61–7.PubMedCrossRefGoogle Scholar
- 73.Ericsson H, Fakt C, Jolin-Mellgård Å, Nordlander M, Sohtell L, Sunzel M, Regardh CG. Clinical and pharmacokinetic results with a new ultrashort-acting calcium antagonist, clevidipine, following gradually increasing intravenous doses to healthy volunteers. Br J Clin Pharmacol. 1999;47:531–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Ericsson H, Bredberg U, Eriksson U, Jolin-Mellgard A, Nordlander M, Regardh C. Pharmacokinetics and arteriovenous differences in clevidipine concentration following a short- and a long-term intravenous infusion in healthy volunteers. Anesthesiology. 2000;92:993–1001.PubMedCrossRefGoogle Scholar
- 75.Nordlander M, Sjöquist PO, Ericsson H, Rydén L. Pharmacodynamic, pharmacokinetic and clinical effects of clevidipine, an ultrashort-acting calcium antagonist for rapid blood pressure control. Cardiovasc Drug Rev. 2004;22:227–50.PubMedCrossRefGoogle Scholar
- 76.Bailey JM, Lu W, Levy JH, Ramsay JG, Shore-Lesserson L, Prielipp RC, Brister NW, Roach GW, Jolin-Mellgard A, Nordlander M. Clevidipine in adult cardiac surgical patients: a dose-finding study. Anesthesiology. 2002;96:1086–94.PubMedCrossRefGoogle Scholar
- 77.Kieler-Jensen N, Jolin-Mellgard A, Nordlander M, Ricksten SE. Coronary and systemic hemodynamic effects of clevidipine, an ultra-short-acting calcium antagonist, for treatment of hypertension after coronary artery surgery. Acta Anaesthesiol Scand. 2000;44:186–93.PubMedCrossRefGoogle Scholar
- 78.Powroznyk AV, Vuylsteke A, Naughton C, Misso SL, Holloway J, Jolin-Mellgard A, Latimer RD, Nordlander M, Feneck RO. Comparison of clevidipine with sodium nitroprusside in the control of blood pressure after coronary artery surgery. Eur J Anaesthesiol. 2003;20:697–703.PubMedCrossRefGoogle Scholar
- 79.Singla N, Warltier DC, Gandhi SD, et al. Treatment of acute postoperative hypertension in cardiac surgery patients: an efficacy study of clevidipine assessing its postoperative antihypertensive effect in cardiac surgery-2 (ESCAPE-2), a randomized, double-blind, placebo-controlled trial. Anesth Analg. 2008;107:59–67.PubMedCrossRefGoogle Scholar
- 80.Aronson S, Dyke CM, Stierer KA, et al. The ECLIPSE trials: comparative studies of clevidipine to nitroglycerin, sodium nitroprusside, and nicardipine for acute hypertension treatment in cardiac surgery patients. Anesth Analg. 2008;107:1110–21.PubMedCrossRefGoogle Scholar
- 81.Leslie J, Brister N, Levy J, et al. Treatment of postoperative hypertension after coronary artery bypass surgery. Double blind comparison of intravenous isradipine and sodium nitroprusside. Circulation. 1994;90(suppl):II-256–61.Google Scholar
- 82.Brister NW, Barnette RE, Schartel SA, et al. Isradipine for treatment of acute hypertension after myocardial revascularization. Crit Care Med. 1991;19:334–8.PubMedCrossRefGoogle Scholar
- 83.Leeman M, Degaute J. Invasive hemodynamic evaluation of sublingual captopril and nifedipine in patients with arterial hypertension after abdominal aortic surgery. Crit Care Med. 1995;23:843–7.PubMedCrossRefGoogle Scholar
- 84.Mullen JC, Miller DR, Weisel RD, et al. Postoperative hypertension: a comparison of diltiazem, nifedipine, and nitroprusside. J Thorac Cardiovasc Surg. 1988;96:122–32.PubMedGoogle Scholar
- 85.Iyer VS, Russell WJ. Nifedipine for postoperative blood pressure control following coronary artery vein grafts. Ann R Coll Surg Engl. 1986;68:73–5.PubMedPubMedCentralGoogle Scholar
- 86.Goldberg ME, Larijani GE. Perioperative hypertension. Pharmacotherapy. 1998;18:911–4.PubMedGoogle Scholar
- 87.Vidt DG. Hypertensive crises: emergencies and urgencies. J Clin Hypertens. 2004;6:520–5.CrossRefGoogle Scholar
- 88.Hill AJ, Reneck RO, Walesby RK. A comparison of fenoldopam and nitroprusside in the control of hypertension following coronary artery surgery. J Cardiothorac Vasc Anesth. 1993;7:279–84.PubMedCrossRefGoogle Scholar
- 89.Gombotz H, Plaza J, Mahla E, et al. DA1-receptor stimulation by fenoldopam in the treatment of postcardiac surgical hypertension. Acta Anaesthesiol Scand. 1998;42:834–40.PubMedCrossRefGoogle Scholar
- 90.Goldberg ME, Cantillo J, Nemiroff MS, et al. Fenoldopam infusion for the treatment of postoperative hypertension. J Clin Anesth. 1993;5:386–91.PubMedCrossRefGoogle Scholar
- 91.Murphy MB, Murray C, Shorten GD. Drug therapy: fenoldopam—a selective peripheral dopamine-receptor agonist for the treatment of severe hypertension. N Engl J Med. 2001;345:1548–57.PubMedCrossRefGoogle Scholar
- 92.Caimmi PP, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17:491–4.PubMedCrossRefGoogle Scholar