Liver Dysfunction in a Patient with Ventricular Assist Device

  • Helen S. TeEmail author
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)


Patients with severe or chronic heart failure (CHF) are at risk for hepatic ischemia due to poor global perfusion from left heart failure or for passive congestion from right heart failure, both of which can lead to significant liver dysfunction. In patients with left heart failure, perfusion of the liver tends to improve with ventricular assist device (VAD) implantation; a few patients, however, develop worse liver function post-VAD due to right heart failure, which can threaten patient survival. Identification of patients who need optimization of liver function prior to VAD and consideration of alternative strategies to improve liver function beyond standard of care before and after VAD placement are critical in optimizing patient outcome.


Liver failure Liver dysfunction Hepatic failure Hepatic dysfunction Bilirubin Coagulopathy Portal hypertension Passive congestion of the liver Cardiac cirrhosis Ventricular assist device 


  1. 1.
    Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33(2):464–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124(1):91–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E, et al. Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol. 2013;61(22):2253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Teh SH, Nagorney DM, Stevens SR, Offord KP, Therneau TM, Plevak DJ, et al. Risk factors for mortality after surgery in patients with cirrhosis. Gastroenterology. 2007;132(4):1261–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Matthews JC, Pagani FD, Haft JW, Koelling TM, Naftel DC, Aaronson KD. Model for end-stage liver disease score predicts left ventricular assist device operative transfusion requirements, morbidity, and mortality. Circulation. 2010;121(2):214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bonde P, Ku NC, Genovese EA, Bermudez CA, Bhama JK, Ciarleglio MM, et al. Model for end-stage liver disease score predicts adverse events related to ventricular assist device therapy. Ann Thorac Surg. 2012;93(5):1541–7. discussion 7–8PubMedCrossRefGoogle Scholar
  7. 7.
    Deo SV, Daly RC, Altarabsheh SE, Hasin T, Zhao Y, Shah IK, et al. Predictive value of the model for end-stage liver disease score in patients undergoing left ventricular assist device implantation. ASAIO J. 2013;59(1):57–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Tsiouris A, Paone G, Nemeh HW, Borgi J, Williams CT, Lanfear DE, et al. Short and long term outcomes of 200 patients supported by continuous-flow left ventricular assist devices. World J Cardiol. 2015;7(11):792–800.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yost GL, Coyle L, Bhat G, Tatooles AJ. Model for end-stage liver disease predicts right ventricular failure in patients with left ventricular assist devices. J Artif Organs. 2016;19(1):21–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Heuman DM, Mihas AA, Habib A, Gilles HS, Stravitz RT, Sanyal AJ, et al. MELD-XI: a rational approach to “sickest first” liver transplantation in cirrhotic patients requiring anticoagulant therapy. Liver Transpl. 2007;13(1):30–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang JA, Kato TS, Shulman BP, Takayama H, Farr M, Jorde UP, et al. Liver dysfunction as a predictor of outcomes in patients with advanced heart failure requiring ventricular assist device support: use of the Model of End-stage Liver Disease (MELD) and MELD eXcluding INR (MELD-XI) scoring system. J Heart Lung Transplant. 2012;31(6):601–10.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Farrar DJ, Hill JD. Recovery of major organ function in patients awaiting heart transplantation with Thoratec ventricular assist devices. Thoratec ventricular assist device principal investigators. J Heart Lung Transplant. 1994;13(6):1125–32.PubMedGoogle Scholar
  13. 13.
    Frazier OH, Rose EA, Oz MC, Dembitsky W, McCarthy P, Radovancevic B, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122(6):1186–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Kamdar F, Boyle A, Liao K, Colvin-Adams M, Joyce L, John R. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Deo SV, Sharma V, Altarabsheh SE, Hasin T, Dillon J, Shah IK, et al. Hepatic and renal function with successful long-term support on a continuous flow left ventricular assist device. Heart Lung Circ. 2014;23(3):229–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshioka D, Takayama H, Colombo PC, Yuzefpolskaya M, Garan AR, Topkara VK, et al. Changes in end-organ function in patients with prolonged continuous-flow left ventricular assist device support. Ann Thorac Surg. 2017;103(3):717–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Weymann A, Patil NP, Sabashnikov A, Mohite PN, Garcia Saez D, Bireta C, et al. Continuous-flow left ventricular assist device therapy in patients with preoperative hepatic failure: are we pushing the limits too far? Artif Organs. 2015;39(4):336–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Demirozu ZT, Hernandez R, Mallidi HR, Singh SK, Radovancevic R, Segura AM, et al. HeartMate II left ventricular assist device implantation in patients with advanced hepatic dysfunction. J Card Surg. 2014;29(3):419–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Imamura T, Kinugawa K, Shiga T, Endo M, Kato N, Inaba T, et al. Preoperative levels of bilirubin or creatinine adjusted by age can predict their reversibility after implantation of left ventricular assist device. Circ J. 2013;77(1):96–104.PubMedCrossRefGoogle Scholar
  21. 21.
    Maxhera B, Albert A, Ansari E, Godehardt E, Lichtenberg A, Saeed D. Survival predictors in ventricular assist device patients with prior extracorporeal life support: selecting appropriate candidates. Artif Organs. 2014;38(9):727–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaplon RJ, Gillinov AM, Smedira NG, Kottke-Marchant K, Wang IW, Goormastic M, et al. Vitamin K reduces bleeding in left ventricular assist device recipients. J Heart Lung Transplant. 1999;18(4):346–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Kato TS, Kitada S, Yang J, Wu C, Takayama H, Naka Y, et al. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am J Cardiol. 2013;112(9):1484–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Maltais S, Stulak JM. Right and left ventricular assist devices support and liver dysfunction: prognostic and therapeutic implications. Curr Opin Cardiol. 2016;31(3):287–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Argiriou M, Kolokotron SM, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6(Suppl 1):S52–9.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Scherer M, Moritz A, Martens S. The use of extracorporeal membrane oxygenation in patients with therapy refractory cardiogenic shock as a bridge to implantable left ventricular assist device and perioperative right heart support. J Artif Organs. 2009;12(3):160–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Durinka JB, Bogar LJ, Hirose H, Brehm C, Koerner MM, Pae WE, et al. End-organ recovery is key to success for extracorporeal membrane oxygenation as a bridge to implantable left ventricular assist device. ASAIO J. 2014;60(2):189–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Riebandt J, Haberl T, Mahr S, Laufer G, Rajek A, Steinlechner B, et al. Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg. 2014;46(3):486–92. discussion 92PubMedCrossRefGoogle Scholar
  30. 30.
    Marasco SF, Lo C, Murphy D, Summerhayes R, Quayle M, Zimmet A, et al. Extracorporeal life support bridge to ventricular assist device: the double bridge strategy. Artif Organs. 2016;40(1):100–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Shah P, Pagani FD, Desai SS, Rongione AJ, Maltais S, Haglund NA, et al. Outcomes of patients receiving temporary circulatory support before durable ventricular assist device. Ann Thorac Surg. 2017;103(1):106–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Nishi H, Toda K, Miyagawa S, Yoshikawa Y, Fukushima S, Yoshioka D, et al. Prediction of outcome in patients with liver dysfunction after left ventricular assist device implantation. J Artif Organs. 2013;16(4):404–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25(1):1–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Aissaoui N, Morshuis M, Schoenbrodt M, Hakim Meibodi K, Kizner L, Borgermann J, et al. Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J Thorac Cardiovasc Surg. 2013;146(1):186–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Deschka H, Holthaus AJ, Sindermann JR, Welp H, Schlarb D, Monsefi N, et al. Can perioperative right ventricular support prevent postoperative right heart failure in patients with biventricular dysfunction undergoing left ventricular assist device implantation? J Cardiothorac Vasc Anesth. 2016;30(3):619–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Kaczorowski DJ, Woo YJ. Who needs an RVAD in addition to an LVAD? Cardiol Clin. 2011;29(4):599–605.PubMedCrossRefGoogle Scholar
  38. 38.
    Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, et al. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant. 2014;33(2):141–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34(12):1549–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Chicago MedicineChicagoUSA

Personalised recommendations