Percutaneous Assist Devices as Salvage from Cardiogenic Shock

  • Isla McClelland
  • Rohan Kalathiya
  • Atman P. ShahEmail author
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)


Cardiogenic shock is a result of inadequate tissue perfusion due to reduced cardiac output. There are multiple causes of cardiogenic shock, including acute ischemia, structural heart issue, valvular dysfunction, or chronic ventricular dysfunction. Regardless of the etiology, there is significant morbidity and mortality associated with cardiogenic shock. A number of percutaneous devices have been developed and utilized in the treatment and stabilization of patients with cardiogenic shock. These devices include intra-aortic balloon pump (IABP), Impella, TandemHeart and extracorporeal membrane oxygenation (ECMO). Choice of which percutaneous ventricular device to use in specific situations will result from consideration of a number associated clinical factors.


Percutaneous ventricular assist device IABP Impella TandemHeart ECMO Cardiogenic shock Morbidity 


  1. 1.
    Reyentovich A, Barghash MH, Hochman JS. Management of refractory cardiogenic shock. Nat Rev Cardiol. 2016;13(8):481–92.CrossRefGoogle Scholar
  2. 2.
    Hochman JS, Buller CE, Sleeper LA, et al. Cardiogenic shock complicating acute myocardial infarction – etiologies, management and outcome: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J Am Coll Cardiol. 2000;36(3 Suppl A):1063–70.CrossRefGoogle Scholar
  3. 3.
    Aissaoui N, Puymirat E, Tabone X, et al. Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: a report from the USIK 1995, USIC 2000, and FAST-MI French nationwide registries. Eur Heart J. 2012;33(20):2535–43.CrossRefGoogle Scholar
  4. 4.
    Goldberg RJ, Spencer FA, Gore JM, Lessard D, Yarzebski J. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation. 2009;119(9):1211–9.CrossRefGoogle Scholar
  5. 5.
    Jeger RV, Radovanovic D, Hunziker PR, et al. Ten-year trends in the incidence and treatment of cardiogenic shock. Ann Intern Med. 2008;149(9):618–26.CrossRefGoogle Scholar
  6. 6.
    Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA. 2006;295(21):2511–5.CrossRefGoogle Scholar
  7. 7.
    Hochman JS, Sleeper LA, Webb JG, et al. for the SHOCK Investigators. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. N Engl J Med. 1999;341(9):625–34.CrossRefGoogle Scholar
  8. 8.
    Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: executive summary. J Am Coll Cardiol. 2014;64(24):2645–87.CrossRefGoogle Scholar
  9. 9.
    Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie D'intervention). Catheter Cardiovasc Interv. 2015;85(7):E175–96.CrossRefGoogle Scholar
  10. 10.
    Sladen RN. New innovations in circulatory support with ventricular assist device and extracorporeal membrane oxygenation therapy. Anesth Analg. 2017;124(4):1071–86.CrossRefGoogle Scholar
  11. 11.
    Khera R, Cram P, Lu X, et al. Trends in the use of percutaneous ventricular assist devices: analysis of national inpatient sample data, 2007 through 2012. JAMA Intern Med. 2015;175(6):941–50.CrossRefGoogle Scholar
  12. 12.
    Thiele H, Zeymer U, Neumann F-J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.CrossRefGoogle Scholar
  13. 13.
    Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2016;18(8):891–975.CrossRefGoogle Scholar
  14. 14.
    Tanaka A, Tuladhar SM, Onsager D, et al. The subclavian intraaortic balloon pump: a compelling bridge device for advanced heart failure. Ann Thorac Surg. 2015;100(6):2151–7. discussion2157–8CrossRefGoogle Scholar
  15. 15.
    Estep JD, Cordero-Reyes AM, Bhimaraj A, et al. Percutaneous placement of an intra-aortic balloon pump in the left axillary/subclavian position provides safe, ambulatory long-term support as bridge to heart transplantation. JACC: Heart Failure. 2013;1(5):382–8.PubMedGoogle Scholar
  16. 16.
    Miller PE, Solomon MA, McAreavey D. Advanced percutaneous mechanical circulatory support devices for cardiogenic shock. Crit Care Med. 2017;45:1922–9.CrossRefGoogle Scholar
  17. 17.
    Ouweneel DM, Eriksen E, Seyfarth M, Henriques JPS. Percutaneous mechanical circulatory support versus intra-aortic balloon pump for treating cardiogenic shock: meta-analysis. J Am Coll Cardiol. 2017;69(3):358–60.CrossRefGoogle Scholar
  18. 18.
    O'Neill WW, Schreiber T, Wohns DHW, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. J Interv Cardiol. 2014;27(1):1–11.CrossRefGoogle Scholar
  19. 19.
    Gaudard P, Mourad M, Eliet J, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care. 2015;19(1):363.CrossRefGoogle Scholar
  20. 20.
    Basir MB, Schreiber TL, Grines CL, et al. Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am J Cardiol. 2017;119(6):845–51.CrossRefGoogle Scholar
  21. 21.
    Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8.CrossRefGoogle Scholar
  22. 22.
    Cheng JM, den CA U, Hoeks SE, et al. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30(17):2102–8.CrossRefGoogle Scholar
  23. 23.
    Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017;69(3):278–87.CrossRefGoogle Scholar
  24. 24.
    O’Neill WW, Kleiman NS, Moses J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126(14):1717–27.CrossRefGoogle Scholar
  25. 25.
    Liu W, Mukku V, Gilani S, Fujise K, Barbagelata A. Percutaneous hemodynamic support (Impella) in patients with advanced heart failure and/or cardiogenic shock not eligible to PROTECT II trial. Int J Angiol. 2013;22(04):207–12.CrossRefGoogle Scholar
  26. 26.
    Kipp R, Raval AN. Percutaneous mechanical assist for severe cardiogenic shock due to acute right ventricular failure. Catheter Cardiovasc Interv. 2015;85(6):1082–7.CrossRefGoogle Scholar
  27. 27.
    Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW, TandemHeart Investigators Group. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469.e1–.e8.CrossRefGoogle Scholar
  28. 28.
    Meyer AL, Williams ML, Slaughter MS. Percutaneous ventricular assist device TandemHeart™ in severe refractory cardiogenic shock. Interv Cardiol Clin. 2011;3(2):161–3.CrossRefGoogle Scholar
  29. 29.
    Ouweneel DM, Schotborgh JV, Limpens J, et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1922–34.CrossRefGoogle Scholar
  30. 30.
    Askenazi DJ, Selewski DT, Paden ML, et al. Renal replacement therapy in critically ill patients receiving extracorporeal membrane oxygenation. Clin J Am Soc Nephrol. 2012;7(8):1328–36.CrossRefGoogle Scholar
  31. 31.
    Tepper S, Masood MF, Baltazar Garcia M, et al. Clinical outcomes and left ventricular unloading with intra-aortic balloon pump during extracorporeal life support. J Heart Lung Transplant. 2017;36(4):S138.CrossRefGoogle Scholar
  32. 32.
    Cheng A, Swartz MF, Massey HT. Impella to unload the left ventricle during peripheral extracorporeal membrane oxygenation. ASAIO J. 2013;59(5):533–6.CrossRefGoogle Scholar
  33. 33.
    Pappalardo F, Schulte C, Pieri M, et al. Concomitant implantation of Impella(®) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur J Heart Fail. 2017;19(3):404–12.CrossRefGoogle Scholar
  34. 34.
    van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: a scientific statement from the American heart association. Circulation. 2017;136(16):e232–68.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isla McClelland
    • 1
  • Rohan Kalathiya
    • 1
  • Atman P. Shah
    • 1
    Email author
  1. 1.Section of Cardiology, Department of MedicineThe University of ChicagoChicagoUSA

Personalised recommendations