Inotropes and Vasopressors in the CT ICU: Getting the Mixture Right

  • Allison DaltonEmail author
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)


Following cardiac surgery many patients require hemodynamic assistance with inotropic or vasoconstrictive support. The most commonly used inotropes are catecholamines, but phosphodiesterase inhibitors or calcium sensitizers have been shown to be effective and indicated in specific patients. For patients with postoperative vasoplegic shock, catecholamines function as vasopressors to increase systemic vascular resistance and mean arterial pressure. In catecholamine resistant shock, vasopressin may be utilized. In severe, life-threatening shock, methylene blue has shown efficacy in improving hemodynamics and decreasing need for vasoconstrictors.


Inotrope Vasopressor Low cardiac output state Cardiogenic shock Vasoplegia Cardiac surgery 


  1. 1.
    Tarvasmäki T, Lassus J, Varpula M, et al. Current real-life use of vasopressors and inotropes in cardiogenic shock – adrenaline use is associated with excess organ injury and mortality. Crit Care. 2016;20:208–18.CrossRefGoogle Scholar
  2. 2.
    Bastien O, Vallet B. French multicenter survey on the use of inotropes after cardiac surgery. Crit Care. 2005;9:241–2.CrossRefGoogle Scholar
  3. 3.
    Kastrup M, Markewitz A, Spies C, et al. Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal surgery. Acta Anaesthesiol Scand. 2007;51:347–58.CrossRefGoogle Scholar
  4. 4.
    Arrigo M, Mebazaa A. Understanding the differences among inotropes. Intensive Care Med. 2015;41:912–5.CrossRefGoogle Scholar
  5. 5.
    Gillies M, Bellomo R, Doolan L, et al. Bench-to-bedside review: inotropic drug therapy after adult cardiac surgery – a systemic literature review. Crit Care. 2005;9(3):266–79.CrossRefGoogle Scholar
  6. 6.
    Belletti A, Castro ML, Silvetti S, et al. The effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth. 2015;115(5):656–75.CrossRefGoogle Scholar
  7. 7.
    Levy B, Bastien O, Bendjelid K, et al. Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5:17–26.CrossRefGoogle Scholar
  8. 8.
    Levy B, Perez P, Perny J, et al. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective randomized pilot study. Crit Care Med. 2011;39(3):450–5.CrossRefGoogle Scholar
  9. 9.
    Butterworth JF, Prielipp RC, Royster RL, et al. Dobutamine increases heart rate more than epinephrine in patient recovering from aortocoronary bypass surgery. J Cardiothorac Vasc Anesth. 1992;6:535–41.CrossRefGoogle Scholar
  10. 10.
    Hui-li G. The management of acute pulmonary hypertension. Cardiovasc Ther. 2011;29:153–75.CrossRefGoogle Scholar
  11. 11.
    Costanzo MR, Dipchand AM, Starling R, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.Google Scholar
  12. 12.
    Papp Z, Édes I, Fruhwald S, et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol. 2012;159:82–7.CrossRefGoogle Scholar
  13. 13.
    Follath F, Cleland JG, Just H, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomized double blind trial. Lancet. 2002;360:196–202.CrossRefGoogle Scholar
  14. 14.
    Landoni G, Lomivorotov VV, Alvaro G, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.CrossRefGoogle Scholar
  15. 15.
    Mehta RH, Leimberger JD, van Diepen S, et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376(21):2032–42.CrossRefGoogle Scholar
  16. 16.
    Erb J, Beutlhauser T, Feldheiser A, et al. Influence of levosimendan on organ dysfunction in patients with severely reduced left ventricular function undergoing cardiac surgery. J Int Med Res. 2014;42(3):750–64.CrossRefGoogle Scholar
  17. 17.
    Salgado Filho MF, Barral M, Barrucand L, et al. A randomized blinded study of the left ventricular myocardial performance index comparing epinephrine to levosimendan following cardiopulmonary bypass. PLoS One. 2015;10(12):1–16. Web.CrossRefGoogle Scholar
  18. 18.
    Mishra A, Kumar B, Dutta V, et al. Comparative effect of levosimendan and milrinone in cardiac surgery patients with pulmonary hypertension and left ventricular dysfunction. J Cardiothorac Vasc Anesth. 2016;30(3):639–46.CrossRefGoogle Scholar
  19. 19.
    Boyle EM Jr, Pohlman TH, Johnson MC, et al. Endothelial cell injury in cardiovascular surgery: the systemic inflammatory response. Ann Thorac Surg. 1997;63:277–84.CrossRefGoogle Scholar
  20. 20.
    Argenziano M, Chen JM, Choudhri AF, et al. Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent. J Thorac Cardiovasc Surg. 1998;116(6):973–80.CrossRefGoogle Scholar
  21. 21.
    Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock and cardiac surgery. Anesthesiology. 2017;126:85–93.CrossRefGoogle Scholar
  22. 22.
    Egi M, Bellomo R, Langenberg C, et al. Selecting a vasopressor drug for vasoplegic shock after adult cardiac surgery: a systematic literature review. Ann Thorac Surg. 2007;83:715–23.CrossRefGoogle Scholar
  23. 23.
    De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.CrossRefGoogle Scholar
  24. 24.
    Feddersen K, Aurell M, Delin K, et al. Effect of cardiopulmonary bypass and prostacyclin on plasma catecholamines, angiotensin II and arginine vasopressin. Acta Anaesthesiol Scand. 1985;29:224–30.CrossRefGoogle Scholar
  25. 25.
    Leyh RG, Kofidis T, Strüber M, et al. Methylene blue: the drug of choice for catecholamine-refractory vasoplegia after cardiopulmonary bypass? J Thorac Cardiovasc Surg. 2003;125:1426–31.CrossRefGoogle Scholar
  26. 26.
    Levin RL, Degrange MA, Bruno GF, et al. Methylene blue reduces mortality and morbidity in vasoplegic patients after cardiac surgery. Ann Thorac Surg. 2004;77:496–9.CrossRefGoogle Scholar
  27. 27.
    Mazzeffi M, Hammer B, Chen E, et al. Methylene blue for postcardiopulmonary bypass vasoplegic syndrome: a cohort study. Ann Card Anaesth. 2017;20(2):178–81.CrossRefGoogle Scholar
  28. 28.
    Mehaffey JH, Johnston LE, Hawkins RB, et al. Methylene blue for vasoplegic syndrome after cardiac operation: early administration improves survival. Ann Thorac Surg. 2017;104(1):36–41.CrossRefGoogle Scholar
  29. 29.
    Özal E, Kuralay E, Yildirim V, et al. Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery. Ann Thorac Surg. 2005;79:1615–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesia & Critical CareUniversity of ChicagoChicagoUSA

Personalised recommendations