Big Data Analytics for Intelligent Internet of Things

  • Mohiuddin Ahmed
  • Salimur Choudhury
  • Fadi Al-TurjmanEmail author
Part of the Transactions on Computational Science and Computational Intelligence book series (TRACOSCI)


The Internet of Things (IoT) is going to be the next technological revolution. According to the Internet, the revenue generated from IoT products and services are going to be approximately 300 billion in 2020. Simultaneously, with the massive amount of data that the IoT will generate, its impact will be reflected across the entire Big data universe that will coerce the organizations to upgrade current tools and technology to evolve to accommodate this additional data volume and take advantage of the insights. IoT and Big data basically are two sides of the same coin according to some experts. It is a challenging task to manage and extract insights from IoT data. Therefore, a proper analytics platform/infrastructure to analyse the IoT data is a vital aspect for any organization when it is also true that not all IoT data is important.


  1. 1.
    Giusto, D., Iera, A., Morabito, G., & Atzori, L. (2010). The internet of things: 20th Tyrrhenian workshop on digital communications. New York: Springer Science & Business Media.zbMATHCrossRefGoogle Scholar
  2. 2.
    Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243–259.CrossRefGoogle Scholar
  3. 3.
    Big Data: 20 Mind-Boggling Facts Everyone Must Read. (2015). [Online; accessed 29-August-2017].
  4. 4.
    Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.CrossRefGoogle Scholar
  5. 5.
    HP: Big Data Platform. (2017). [Online; accessed 29-August-2017].
  6. 6.
    Haykin, S., et al. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRefGoogle Scholar
  7. 7.
    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  8. 8.
    Zaki Hasan, M., & Al-Turjman, F. (2018). Swarm-based data delivery in social internet of things. In F. Al-Turjman (Ed.), Smart things and femtocells (pp. 179–218). Boca Raton: CRC Press.Google Scholar
  9. 9.
    Friend, D. H., Thomas, R. W., MacKenzie, A. B., & Silva, L. A. (2007). Distributed learning and reasoning in cognitive networks: Methods and design decisions. In Q. H. Mahmoud (Ed.), Cognitive networks: Towards self-aware networks (pp. 223–246). Hoboken: Wiley.CrossRefGoogle Scholar
  10. 10.
    Al-Turjman, F. (2018). Fog-based caching in software-defined information-centric networks. Computers & Electrical Engineering, 69(1), 54–67.CrossRefGoogle Scholar
  11. 11.
    Al-Turjman, F. (2017). Information-centric sensor networks for cognitive IoT: An overview. Annals of Telecommunications, 72(1), 3–18.CrossRefGoogle Scholar
  12. 12.
    Alabady, S., & Al-Turjman, F. (2018). Low complexity parity check code for futuristic wireless networks applications. IEEE Access, 6(1), 18398–18407.CrossRefGoogle Scholar
  13. 13.
    Liu, X., Iftikhar, N., & Xie, X. (2014). Survey of real-time processing systems for big data. In Proceedings of the 18th international database engineering & applications symposium, IDEAS’14 (pp. 356–361). New York: ACM.Google Scholar
  14. 14.
    Reed, D. A., & Dongarra, J. (2015). Exascale computing and big data. Communications of the ACM, 58(7), 56–68.CrossRefGoogle Scholar
  15. 15.
    Fang, H., Zhang, Z., Wang, C. J., Daneshmand, M., Wang, C., & Wang, H. (2015). A survey of big data research. IEEE Network, 29(5), 6–9.CrossRefGoogle Scholar
  16. 16.
    Chong, D., & Shi, H. (2015). Big data analytics: A literature review. Journal of Management Analytics, 2(3), 175–201.CrossRefGoogle Scholar
  17. 17.
    Apache Hadoop. (2017). [Online; Accessed 29-Aug-2017].
  18. 18.
    McKinsey & Company. (2017). [Online; Accessed 29-Aug-2017].
  19. 19.
    Doug Laney. (2017). [Online; Accessed 29-Aug-2017].
  20. 20.
    What is Big Data. (2017). [Online; Accessed 29-Aug-2017].
  21. 21.
    Understanding Microsoft Big data solutions. (2017). [Online; Accessed 29-Aug-2017].
  22. 22.
    Big Data Information. (2017). [Online; Accessed 29-Aug-2017].
  23. 23.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute, June 2011.Google Scholar
  24. 24.
    Big ethics for Big data. (2017). [Online; Accessed 29-Aug-2017].
  25. 25.
    Planning for Big Data. (2017). [Online; Accessed 29-Aug-2017].
  26. 26.
    Ahmed, M., Anwar, A., Mahmood, A. N., Shah, Z., & Maher, M. J. (2015). An investigation of performance analysis of anomaly detection techniques for big data in scada systems. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 15(3), 5.CrossRefGoogle Scholar
  27. 27.
    FixMyStreet. (2017). [Online; Accessed 29-Aug-2017].
  28. 28.
    Ushahidi. (2017). [Online; Accessed 29-Aug-2017].
  29. 29.
    Padhariya, N., Mondal, A., Goyal, V., Shankar, R., Madria, S. K. (2011). EcoTop: An economic model for dynamic processing of top-k queries in mobile-P2P networks (pp. 251–265). Berlin/Heidelberg: Springer.Google Scholar
  30. 30.
    Hasan, M. Z., & Al-Turjman, F. (2018). Analysis of cross-layer design of quality-of-service forward geographic wireless sensor network routing strategies in green internet of things. IEEE Access, 6(1), 20371–20389.CrossRefGoogle Scholar
  31. 31.
    U.S. Patent No. 6,948,044. (2017). [Online; Accessed 29-Aug-2017].
  32. 32.
    Huber, N., Becker, S., Rathfelder, C., Schweflinghaus, J., & Reussner, R. H. (2010). Performance modeling in industry: A case study on storage virtualization. In Proceedings of the 32Nd ACM/IEEE international conference on software engineering – volume 2, ICSE’10 (pp. 1–10). New York: ACM.Google Scholar
  33. 33.
    Chen, X., Wang, S., Dong, Y., & Wang, X. (2016). Big data storage architecture design in cloud computing (pp. 7–14). Singapore: Springer.Google Scholar
  34. 34.
    Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2, 652–687.CrossRefGoogle Scholar
  35. 35.
    The Hadoop Distributed File System. (2017). [Online; Accessed 29-Aug-2017].
  36. 36.
    Kosmos distributed file system (KFS). (2017). [Online; Accessed 29-Aug-2017].
  37. 37.
    NoSQL. (2017). [Online; Accessed 29-Aug-2017].
  38. 38.
    BigTable. (2017). [Online; Accessed 29-Aug-2017].
  39. 39.
    MongoDB. (2017). [Online; Accessed 29-Aug-2017].
  40. 40.
    Pino, T., Choudhury, S., & Al-Turjman, F. (2018). Dominating set algorithms for wireless sensor networks survivability. IEEE Access, 6(1), 17527–17532.CrossRefGoogle Scholar
  41. 41.
    Dryad. (2017). [Online; Accessed 29-Aug-2017].
  42. 42.
    Zhang, Z., Cherkasova, L., Verma, A., & Loo, B. T. (2012). Automated profiling and resource management of pig programs for meeting service level objectives. In Proceedings of the 9th international conference on autonomic computing, ICAC’12 (pp. 53–62), New York. ACM.Google Scholar
  43. 43.
    Sandholm, T., & Lai, K. (2009). Mapreduce optimization using regulated dynamic prioritization. In Proceedings of the eleventh international joint conference on measurement and modeling of computer systems, SIGMETRICS’09 (pp. 299–310), New York. ACM.Google Scholar
  44. 44.
    Graysort benchmark. (2017). [Online; Accessed 29-Aug-2017].
  45. 45.
    Terabyte sort on Apache Hadoop. (2017). [Online; Accessed 29-Aug-2017].
  46. 46.
    Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., & Rabl, T. (2013). Setting the direction for big data benchmark standards (pp. 197–208). Berlin/Heidelberg: Springer.Google Scholar
  47. 47.
    Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium on cloud computing, SoCC’10 (pp. 143–154), New York. ACM.Google Scholar
  48. 48.
    Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., & Jacobsen, H.-A. (2013). Bigbench: Towards an industry standard benchmark for big data analytics. In Proceedings of the 2013 ACM SIGMOD international conference on management of data, SIGMOD’13 (pp. 1197–1208), New York. ACM.Google Scholar
  49. 49.
    Big Data Software. (2017). [Online; Accessed 29-Aug-2017].
  50. 50.
    The R Project for Statistical Computing. (2017). [Online; Accessed 29-Aug-2017].
  51. 51.
    RapidMiner. (2017). [Online; Accessed 29-Aug-2017].
  52. 52.
    KNMINE. (2017). [Online; Accessed 29-Aug-2017].
  53. 53.
    WEKA. (2017). [Online; Accessed 29-Aug-2017].

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohiuddin Ahmed
    • 1
  • Salimur Choudhury
    • 2
  • Fadi Al-Turjman
    • 3
    Email author
  1. 1.College of Technology and DesignCanberra Institute of TechnologyCanberraAustralia
  2. 2.Department of Computer ScienceLakehead UniversityThunder BayCanada
  3. 3.Department of Computer EngineeringAntalya Bilim UniversityAntalyaTurkey

Personalised recommendations