Advertisement

On Computing Eigenvectors of Symmetric Tridiagonal Matrices

  • Nicola MastronardiEmail author
  • Harold Taeter
  • Paul Van Dooren
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 30)

Abstract

The computation of the eigenvalue decomposition of symmetric matrices is one of the most investigated problems in numerical linear algebra. For a matrix of moderate size, the customary procedure is to reduce it to a symmetric tridiagonal one by means of an orthogonal similarity transformation and then compute the eigendecomposition of the tridiagonal matrix.

Recently, Malyshev and Dhillon have proposed an algorithm for deflating the tridiagonal matrix, once an eigenvalue has been computed. Starting from the aforementioned algorithm, in this manuscript we develop a procedure for computing an eigenvector of a symmetric tridiagonal matrix, once its associate eigenvalue is known.

We illustrate the behavior of the proposed method with a number of numerical examples.

Keywords

Tridiagonal matrices Eigenvalue computation QR method 

Notes

Acknowledgements

The authors wish to thank the anonymous reviewers for their constructive remarks that helped improving the proposed algorithm and the presentation of the results.

The authors would like to thank Paolo Bientinesi and Matthias Petschow for providing their MATLAB implementation of the MR3 algorithm, written by Matthias Petschow.

The work of the author “Nicola Mastronardi” is partly supported by GNCS–INdAM and by CNR under the Short Term Mobility Program. The work of the author “Harold Taeter” is supported by INdAM-DP-COFUND-2015, grant number: 713485.

References

  1. 1.
    Anderson, E., Bai, Z., Bischof, C., Blackford, L., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)CrossRefGoogle Scholar
  2. 2.
    Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Cambridge (1984)zbMATHGoogle Scholar
  4. 4.
    Dhillon, I., Malyshev, A.: Inner deflation for symmetric tridiagonal matrices. Linear Algebra Appl. 358, 139–144 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dhillon, I., Parlett, B.: Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  7. 7.
    Gu, M., Eisenstat, S.: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16(1), 172–191 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)CrossRefGoogle Scholar
  9. 9.
    Mastronardi, N., Van Dooren, P.: Computing the Jordan structure of an eigenvalue. SIAM J. Matrix Anal. Appl. 38, 949–966 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mastronardi, N., Van Dooren, P.: The QR–steps with perfect shifts. SIAM J. Matrix Anal. Appl. 39, 1591–1615 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics, Philadelplhia (1997)Google Scholar
  12. 12.
    Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 14(1), 279–316 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Petschow, M., Quintana-Ortí, E., Bientinesi, P.: Improved accuracy and parallelism for MRRR–based eigensolvers–a mixed precision approach. SIAM J. Sci. Comput. 36(2), C240–C263 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wilkinson, J., Bauer, F., Reinsch, C.: Linear Algebra. Handbook for Automatic Computation. Springer, Berlin (2013)Google Scholar
  15. 15.
    Willems, P.R., Lang, B.: Twisted factorizations and qd–type transformations for the MR3 algorithm–new representations and analysis. SIAM J. Matrix Anal. Appl. 33(2), 523–553 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Willems, P.R., Lang, B.: A framework for the MR3 algorithm: theory and implementation. SIAM J. Sci. Stat. Comput. 35(2), A740–A766 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicola Mastronardi
    • 1
    Email author
  • Harold Taeter
    • 2
  • Paul Van Dooren
    • 3
  1. 1.Istituto per le Applicazioni del Calcolo “M. Picone”sede di BariItaly
  2. 2.Dipartimento di matematicaUniversità degli Studi di BariBariItaly
  3. 3.Department of Mathematical EngineeringCatholic University of LouvainLouvain-la-NeuveBelgium

Personalised recommendations