Block Generalized Locally Toeplitz Sequences: Topological Construction, Spectral Distribution Results, and Star-Algebra Structure

  • Carlo GaroniEmail author
  • Stefano Serra-Capizzano
  • Debora Sesana
Part of the Springer INdAM Series book series (SINDAMS, volume 30)


The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic singular value and eigenvalue distribution of matrices An arising from virtually any kind of numerical discretization of differential equations (DEs). Indeed, when the discretization parameter n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be a GLT sequence or one of its ‘relatives’, i.e., a block GLT sequence or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the applicative interest, a solid theory of block GLT sequences is still missing. The purpose of the present paper is to develop this theory in a systematic way.


Singular values and eigenvalues Block generalized locally Toeplitz sequences Block Toeplitz matrices Discretization of differential equations 



Carlo Garoni is a Marie-Curie fellow of the Italian INdAM under grant agreement PCOFUND-GA-2012-600198. The work of the authors has been supported by the INdAM GNCS (Gruppo Nazionale per il Calcolo Scientifico). The authors wish to thank Giovanni Barbarino for useful discussions.


  1. 1.
    Al-Fhaid, A.S., Serra-Capizzano, S., Sesana, D., Ullah, M.Z.: Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators. Numer. Linear Algebra Appl. 21, 722–743 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avram, F.: On bilinear forms in Gaussian random variables and Toeplitz matrices. Probab. Theory Related Fields 79, 37–45 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barbarino, G.: Equivalence between GLT sequences and measurable functions. Linear Algebra Appl. 529, 397–412 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beckermann, B., Serra-Capizzano, S.: On the asymptotic spectrum of finite element matrix sequences. SIAM J. Numer. Anal. 45, 746–769 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benedusi, P., Garoni, C., Krause, R., Li, X., Serra-Capizzano, S.: Space-time FE-DG discretization of the anisotropic diffusion equation in any dimension: the spectral symbol. SIAM J. Matrix Anal. Appl. 39, 1383–1420 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertaccini, D., Donatelli, M., Durastante, F., Serra-Capizzano, S.: Optimizing a multigrid Runge-Kutta smoother for variable-coefficient convection-diffusion equations. Linear Algebra Appl. 533, 507–535 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhatia, R.: Matrix Analysis. Springer, New York (1997)CrossRefGoogle Scholar
  8. 8.
    Bini, D., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Oxford University Press, Oxford (2005)CrossRefGoogle Scholar
  9. 9.
    Bini, D., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. SIAM, Philadelphia (2012)zbMATHGoogle Scholar
  10. 10.
    Böttcher, A., Grudsky, S.M.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Birkhäuser, Basel (2000)Google Scholar
  11. 11.
    Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. SIAM, Philadelphia (2005)CrossRefGoogle Scholar
  12. 12.
    Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999)CrossRefGoogle Scholar
  13. 13.
    Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  14. 14.
    Böttcher, A., Garoni, C., Serra-Capizzano, S.: Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey. Sb. Math. 208, 1602–1627 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Del Prete, V., Di Benedetto, F., Donatelli, M., Serra-Capizzano, S.: Symbol approach in a signal-restoration problem involving block Toeplitz matrices. J. Comput. Appl. Math. 272, 399–416 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Donatelli, M., Garoni, C., Mazza, M., Serra-Capizzano, S., Sesana, D.: Spectral behavior of preconditioned non-Hermitian multilevel block Toeplitz matrices with matrix-valued symbol. Appl. Math. Comput. 245, 158–173 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Spectral analysis and spectral symbol of matrices in isogeometric collocation methods. Math. Comput. 85, 1639–1680 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Donatelli, M., Garoni, C., Mazza, M., Serra-Capizzano, S., Sesana, D.: Preconditioned HSS method for large multilevel block Toeplitz linear systems via the notion of matrix-valued symbol. Numer. Linear Algebra Appl. 23, 83–119 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Donatelli, M., Dorostkar, A., Mazza, M., Neytcheva, M., Serra-Capizzano, S.: Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem. Comput. Math. Appl. 74, 1015–1028 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dumbser, M., Fambri, F., Furci, I., Mazza, M., Serra-Capizzano, S., Tavelli, M.: Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations: spectral analysis and computational results. Numer. Linear Algebra Appl. 25, e2151 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fasino, D., Serra-Capizzano, S.: From Toeplitz matrix sequences to zero distribution of orthogonal polynomials. Contemp. Math. 323, 329–340 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Garoni, C.: Spectral distribution of PDE discretization matrices from isogeometric analysis: the case of L 1 coefficients and non-regular geometry. J. Spectral Theory 8, 297–313 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. I. Springer, Cham (2017)Google Scholar
  25. 25.
    Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. II. Springer, Cham (2018)Google Scholar
  26. 26.
    Garoni, C., Serra-Capizzano, S., Sesana, D.: Spectral analysis and spectral symbol of d-variate \(\mathbb {Q}_{\boldsymbol {p}}\) Lagrangian FEM stiffness matrices. SIAM J. Matrix Anal. Appl. 36, 1100–1128 (2015)Google Scholar
  27. 27.
    Garoni, C., Manni, C., Serra-Capizzano, S., Sesana, D., Speleers, H.: Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods. Math. Comput. 86, 1343–1373 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Garoni, C., Manni, C., Serra-Capizzano, S., Sesana, D., Speleers, H.: Lusin theorem, GLT sequences and matrix computations: an application to the spectral analysis of PDE discretization matrices. J. Math. Anal. Appl. 446, 365–382 (2017)zbMATHGoogle Scholar
  29. 29.
    Garoni, C., Mazza, M., Serra-Capizzano, S.: Block generalized locally Toeplitz sequences: from the theory to the applications. Axioms 7, 49 (2018)CrossRefGoogle Scholar
  30. 30.
    Garoni, C., Serra-Capizzano, S., Sesana, D.: Block locally Toeplitz sequences: construction and properties. In: Bini, D.A., et al. (eds.) Structured Matrices in Numerical Linear Algebra. Springer INdAM Series, vol. 30, pp. 25–58. Springer, Cham (2019). Google Scholar
  31. 31.
    Garoni, C., Speleers, H., Ekström, S.-E., Reali, A., Serra-Capizzano, S., Hughes, T.J.R.: Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review. Arch. Comput. Meth. Eng. (in press).
  32. 32.
    Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications, 2nd edn. AMS Chelsea Publishing, New York (1984)Google Scholar
  33. 33.
    Parter, S.V.: On the distribution of the singular values of Toeplitz matrices. Linear Algebra Appl. 80, 115–130 (1986)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Peters, J., Reif, U.: Subdivision Surfaces. Springer, Berlin (2008)CrossRefGoogle Scholar
  35. 35.
    Roman, F., Manni, C., Speleers, H.: Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness. Numer. Math. 135, 169–216 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Pearson Education Asia Limited and China Machine Press, Hong Kong (2010)zbMATHGoogle Scholar
  37. 37.
    Salinelli, E., Serra-Capizzano, S., Sesana, D.: Eigenvalue-eigenvector structure of Schoenmakers–Coffey matrices via Toeplitz technology and applications. Linear Algebra Appl. 491, 138–160 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Serra-Capizzano, S.: Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach. Linear Algebra Appl. 328, 121–130 (2001)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Serra-Capizzano, S.: Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations. Linear Algebra Appl. 366, 371–402 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Serra-Capizzano, S.: The GLT class as a generalized Fourier analysis and applications. Linear Algebra Appl. 419, 180–233 (2006)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tilli, P.: A note on the spectral distribution of Toeplitz matrices. Linear Multilinear Algebra 45, 147–159 (1998)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Tilli, P.: Locally Toeplitz sequences: spectral properties and applications. Linear Algebra Appl. 278, 91–120 (1998)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Tyrtyshnikov, E.E.: A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl. 232, 1–43 (1996)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Tyrtyshnikov, E.E., Zamarashkin, N.L.: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships. Linear Algebra Appl. 270, 15–27 (1998)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Van Assche, W.: Zero distribution of orthogonal polynomials with asymptotically periodic varying recurrence coefficients. In: Priezzhev, V.B., Spiridonov, V.P. (eds.), Self-Similar Systems, pp. 392–402. Joint Institute for Nuclear Research, Dubna (1999)Google Scholar
  46. 46.
    Zamarashkin, N.L., Tyrtyshnikov, E.E.: Distribution of eigenvalues and singular values of Toeplitz matrices under weakened conditions on the generating function. Sb. Math. 188, 1191–1201 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlo Garoni
    • 1
    • 2
    Email author
  • Stefano Serra-Capizzano
    • 2
    • 3
  • Debora Sesana
    • 2
  1. 1.University of Italian SwitzerlandInstitute of Computational ScienceLuganoSwitzerland
  2. 2.University of InsubriaDepartment of Science and High TechnologyComoItaly
  3. 3.Uppsala UniversityDepartment of Information Technology, Division of Scientific ComputingUppsalaSweden

Personalised recommendations