Advertisement

Efficient Preconditioner Updates for Semilinear Space–Time Fractional Reaction–Diffusion Equations

  • Daniele BertacciniEmail author
  • Fabio Durastante
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 30)

Abstract

The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the nonlocality of the fractional differential operators. In this work we consider the numerical solution of nonlinear space–time fractional reaction–diffusion equations integrated in time by fractional linear multistep formulas. The Newton step needed to advance in (fractional) time requires the solution of sequences of large and dense linear systems because of the fractional operators in space. A preconditioning updating strategy devised recently is adapted and the spectrum of the underlying operators is briefly analyzed. Because of the quasilinearity of the problem, each Jacobian matrix of the Newton equations can be written as the sum of a multilevel Toeplitz plus a diagonal matrix and produced exactly in the code. Numerical tests with a population dynamics problem show that the proposed approach is fast and reliable with respect to standard direct, unpreconditioned, multilevel circulant/Toeplitz and ILU preconditioned iterative solvers.

Keywords

Semilinear fractional diffusion equations Update of preconditioners Localized and structured linear systems 

Notes

Acknowledgements

We wish to thank two anonymous referees for their constructive comments which have improved the readability of the paper.

This work was supported in part by the 2018 GNCS–INDAM project “Tecniche innovative per problemi di algebra lineare.” The first author acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

  1. 1.
    Bell, N., Garland, M.: Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph Computations. Version 0.5.1 (2015). http://cusplibrary.github.io/
  2. 2.
    Bellavia, S., Bertaccini, D., Morini, B.: Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems. SIAM J. Sci. Comput. 33(5), 2595–2619 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benzi, M., Tüma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19(3), 968–994 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benzi, M., Meyer, C.D., Tüma, M.: A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 17(5), 1135–1149 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benzi, M., Cullum, J.K., Tüma, M.: Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput. 22(4), 1318–1332 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. ETNA 18, 49–64 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bertaccini, D., Durastante, F.: Interpolating preconditioners for the solution of sequence of linear systems. Comput. Math. Appl. 72(4), 1118–1130 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bertaccini, D., Durastante, F.: Solving mixed classical and fractional partial differential equations using short–memory principle and approximate inverses. Numer. Algorithms 74(4), 1061–1082 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bertaccini, D., Durastante, F.: Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications. Chapman and Hall/CRC, New York (2018)CrossRefGoogle Scholar
  11. 11.
    Bertaccini, D., Filippone, S.: Sparse approximate inverse preconditioners on high performance GPU platforms. Comput. Math. Appl. 71, 693–711 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cipolla, S., Durastante, F.: Fractional PDE constrained optimization: An optimize-then-discretize approach with L-BFGS and approximate inverse preconditioning. Appl. Numer. Math. 123, 43–57 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Golub, G.H., Van Loan, C.F.: Matrix computations, 4 edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2012)zbMATHGoogle Scholar
  16. 16.
    Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6(3), 532–541 (1985)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jaffard, S.: Propriétés des matrices <<bien localisées>> près de leur diagonale et quelques applications. In: Ann. Henri Poincaré Analyse non linéaire, vol. 7.5, pp. 461–476. Gauthier-Villars (1990)Google Scholar
  18. 18.
    Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York, (1991)zbMATHGoogle Scholar
  19. 19.
    Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Moroney, T., Yang, Q.: A banded preconditioner for the two–sided, nonlinear space–fractional diffusion equation. Comput. Math. Appl. 66(5), 659–667 (2013). Fractional Differentiation and its Applications. https://doi.org/10.1016/j.camwa.2013.01.048. http://www.sciencedirect.com/science/article/pii/S0898122113000783 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  22. 22.
    Ng, M.K., Pan, J.: Approximate inverse circulant–plus–diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J. Sci. Comput. 32(3), 1442–1464 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 48391 (2006)Google Scholar
  24. 24.
    Prakash, A., Kumar, M.: Numerical solution of two dimensional time fractional-order biological population model. Open Phys. 14(1), 177–186 (2016)CrossRefGoogle Scholar
  25. 25.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)CrossRefGoogle Scholar
  26. 26.
    Simmons, A., Yang, Q., Moroney, T.: A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices. J. Comput. Phys. 287, 254–268 (2015). https://doi.org/10.1016/j.jcp.2015.02.012. http://www.sciencedirect.com/science/article/pii/S0021999115000741 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74(2), 171–176 (1986)CrossRefGoogle Scholar
  28. 28.
    Van Duin, A.C.: Scalable parallel preconditioning with the sparse approximate inverse of triangular matrices. SIAM J. Matrix Anal. Appl. 20(4), 987–1006 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wolkenfelt, P.H.M.: Linear Multistep Methods and the Construction of Quadrature Formulae for Volterra Integral and Integro–Differential Equations. Tech. Rep. NW 76/79, Mathematisch Centrum, Amsterdam (1979)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Università di Roma “Tor Vergata”dipartimento di MatematicaRomeItaly
  2. 2.Istituto per le Applicazioni del Calcolo (IAC) “M. Picone”National Research Council (CNR)RomeItaly
  3. 3.Università di Pisadipartimento di InformaticaPisaItaly

Personalised recommendations