Sun and Weather

  • Claudio Vita-FinziEmail author


Our grasp of the solar factor in weather remains imperfect, to the detriment of forecasting and palaeoclimatic analysis, but there is progress on several novel fronts, and the study of exoplanet atmospheres provides useful pointers. The influence of galactic cosmic rays on cloud cover is being assessed experimentally. Phytochemistry allows the broadbrush lessons of ecology to be refined. Ozone monitoring and palaeohydrology shed light on the impact of solar UV on the global circulation.


  1. 1.
    Bjerknes J (1969) Atmospheric teleconnections from the Equatorial Pacific. Month Weath Rev 97:163–172ADSCrossRefGoogle Scholar
  2. 2.
    Bornman JF et al (2015) Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochem Photobiol Sci 14:88–107CrossRefGoogle Scholar
  3. 3.
    Boucher O et al (2013) Clouds and aerosols. In Stocker TF et al (eds) Climate Change 2013: The physical science basis. Cambridge Univ Press CambridgeGoogle Scholar
  4. 4.
    Chen D et al (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736ADSCrossRefGoogle Scholar
  5. 5.
    Chiodo G & Polvani LM (2016) Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback. J Clim 29:4651–4663ADSCrossRefGoogle Scholar
  6. 6.
    Dengel S, Aeby D, Grace J (2009) A relationship between galactic cosmic radiation and tree rings. New Phyt 184:545–551CrossRefGoogle Scholar
  7. 7.
    DeVorkin DH (1990) Defending a dream: Charles Greeley Abbot’s years at the Smithsonian. J Hist Astron 21:121–136ADSCrossRefGoogle Scholar
  8. 8.
    Dickinson R (1975) Solar variability and the lower atmosphere. Bull Am Met Soc 56: 1246–1248CrossRefGoogle Scholar
  9. 9.
    Diehl R et al (2016) Radioactive 26Al from massive stars in the Galaxy. Nature 439:45–47ADSCrossRefGoogle Scholar
  10. 10.
    Ensminger PA (2001) Life under the Sun. Yale Univ Press, New Haven & LondonGoogle Scholar
  11. 11.
    Feynman R, Leighton RB, Sands ML (1963) The Feynman lectures on physics. Addison-Wesley, Reading, MasszbMATHGoogle Scholar
  12. 12.
    Forbush SE (1967) Solar influences on cosmic rays. Proc Nat Acad Sci 43:28–41ADSCrossRefGoogle Scholar
  13. 13.
    Fuller-Rowell T et al (2004) Impact of solar EUV, XUV, and X-ray variations on Earth’s atmosphere. Geophys Monog 141:341–354Google Scholar
  14. 14.
    Gessler A et al (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell Env 32:780–795CrossRefGoogle Scholar
  15. 15.
    Gray LJ et al (2010) Solar influences on climate. Rev Geophys 48: RG4001,
  16. 16.
    Haigh JD (1999) Modelling the impact of solar variability on climate. J Atmos Solar-Terr Phys 61:63–72ADSCrossRefGoogle Scholar
  17. 17.
    Harrison RG, Stephenson DB (2006) Empirical evidence for a non-linear effect of galactic cosmic rays on clouds. Proc Roy Soc 462: Scholar
  18. 18.
    Hood LL (1999) Effects of short-term solar UV variability on the stratosphere. J Atmos Sol-Terr Phys 61:41–51ADSCrossRefGoogle Scholar
  19. 19.
    Hudson RD (2012) Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010. Atmos Chem Phys 12:7797–7808ADSCrossRefGoogle Scholar
  20. 20.
    IPCC (1997) Introduction to simple climate models used in the IPCC second assessment report. IPCC Geneva, SwitzerlandGoogle Scholar
  21. 21.
    IPCC (2014) Climate Change 2014: Synthesis Report. IPCC, Geneva, SwitzerlandGoogle Scholar
  22. 22.
    Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433ADSCrossRefGoogle Scholar
  23. 23.
    Laken BA, Kniveton DR, Frogley MR (2010) Cosmic rays linked to rapid mid-latitude cloud changes. Atmos Chem Phys 10:10941–10948ADSCrossRefGoogle Scholar
  24. 24.
    Lam MM, Chisham G, Freeman MP (2014) Solar wind-driven geopotential height anomalies originate in the Antarctic lower troposphere. Geophys Res Lett 41:6509–6514ADSCrossRefGoogle Scholar
  25. 25.
    Leopold LB, Vita-Finzi C (1998) Valley changes in the Mediterranean and America. Proc Am Phil Soc 142:1–17Google Scholar
  26. 26.
    Li KJ et al (2012) Why is the solar constant not a constant? Astrophys J 747:135ADSCrossRefGoogle Scholar
  27. 27.
    Meehl GA et al (2009) Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science 325:1114–1118ADSCrossRefGoogle Scholar
  28. 28.
    Myhre G et al (2013) Climate Change 2013: The Physical Science Basis. Cambridge Univ Press, CambridgeGoogle Scholar
  29. 29.
    Ney ER (1959) Cosmic radiation and the weather. Nature 183:451–452ADSCrossRefGoogle Scholar
  30. 30.
    Rozema J et al (2009) UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Photochem Photobiol Sci 8:1233–1243SCrossRefGoogle Scholar
  31. 31.
    Salby ML (1996) Fundamentals of Atmospheric Physics. Academic, San DiegoGoogle Scholar
  32. 32.
    Salby ML, Callaghan PF (2004) Evidence of the solar cycle in the general circulation of the stratosphere. J Clim 17:34–46ADSCrossRefGoogle Scholar
  33. 33.
    Schmidt GA et al (2006) Present-day atmospheric simulations using GISS Model E: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192ADSCrossRefGoogle Scholar
  34. 34.
    Shaviv NJ (2002) Cosmic ray diffusion from the Galactic Spiral Arms, iron meteorites, and a possible climatic connection? Phys Rev Lett 89:051102ADSCrossRefGoogle Scholar
  35. 35.
    Shindell D (1999) Solar cycle variability, ozone, and climate. Science 284:305–308ADSCrossRefGoogle Scholar
  36. 36.
    Showman AP, Cho J Y-K, Menou K (2009) Atmospheric circulation of exoplanets. In Sweager S (ed) Exoplanets, Univ Arizona Press, Tucson, 471–516Google Scholar
  37. 37.
    SNSF (Swiss National Science Foundation) (2017) Future and past solar influence on the terrestrial climate. GenevaGoogle Scholar
  38. 38.
    Soudant A et al (2016) Intra-annual variability of wood formation and d13C in tree-rings at Hyytiälä, Finland. Agric Forest Met 224:17–29CrossRefGoogle Scholar
  39. 39.
    Sturrock PA (2009) Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar coreGoogle Scholar
  40. 40.
    Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J Atmos Sol-Terr Phys 59:1225–1232ADSCrossRefGoogle Scholar
  41. 41.
    Svensmark et al (2016) The response of clouds and aerosols to cosmic ray decreases. Jour Geophys Res, Space Phys 121:8152–8181ADSCrossRefGoogle Scholar
  42. 42.
    Svensmark H et al (2017) Increased ionization supports growth of aerosols into cloud condensation nuclei. Nature comm 8: 2199ADSCrossRefGoogle Scholar
  43. 43.
    Takahashi K, Tokimitsu Y, Yassue K (2005) Climatic factors affecting the tree-ring width of Betula ermanii at the timberline of Mount Norikura, central Japan. Ecol Res 20:445–451CrossRefGoogle Scholar
  44. 44.
    Takahashi Y et al (2009) 27-day variation in cloud amount and relationship to the solar cycle. Atmos Chem Phys Disc 9:15327–15338CrossRefGoogle Scholar
  45. 45.
    Thayer JP et al (2008) Thermospheric density oscillations due to periodic solar wind high-speed streams.J. Geophys Res 113:A06307CrossRefGoogle Scholar
  46. 46.
    Thompson MJ et al (2003) The internal rotation of the Sun. Ann Rev Astron Astrophys 41:599–643ADSCrossRefGoogle Scholar
  47. 47.
    Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71:066801ADSCrossRefGoogle Scholar
  48. 48.
    Versteegh GJM (2005) Solar forcing of climate. 2: evidence from the past. Space Sci Rev 120:243–286ADSCrossRefGoogle Scholar
  49. 49.
    Vita-Finzi C (2008) Fluvial solar signals. Geol Soc Lond Spec Pub 296:105–115CrossRefGoogle Scholar
  50. 50.
    Vita-Finzi C (2010) The Dicke cycle: a 27-day solar oscillation. J Atmos Sol-Terr Phys 72:139–142ADSCrossRefGoogle Scholar
  51. 51.
    Vita-Finzi C (2014) Towards a solar system timescale. Astron Geophys 55:4.27–4.29CrossRefGoogle Scholar
  52. 52.
    The poet Keats’ epitaph, according to Lord Houghton, read ‘Here lies one whose name was writ in water’Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesNatural History MuseumLondonUK

Personalised recommendations