Advertisement

The Solar Furnace

  • Claudio Vita-FinziEmail author
Chapter

Abstract

The accepted scheme for the solar interior is a core powered by nuclear fusion primarily via the p-p reaction. The validity of the Standard Solar Model for the Sun’s related metabolism can be assessed by reference to the associated flux of neutrinos. A temperature of 15 million K at the core falls to ~6000 K at the photosphere and rises to 20,000 K at the chromosphere and to 1–2 million K or more at the outer margins of the solar corona; most of the mechanisms currently favoured for this progression hinge on magnetic reconnection or on wave heating, whereas the scheme advanced here is a stepwise sequence, with induction heating at the photosphere, the Joule-Thomson effect in the chromosphere, and plasma expansion in the corona, a tripartite solution which also explains the threefold structure of the solar atmosphere.

References

  1. 1.
    Aharmin B et al (2010) Searches for high-frequency variations in the 8B solar neutrino flux at the Sudbury Neutrino Observatory. Astrophys Jour 710:540–548Google Scholar
  2. 2.
    Aschwanden M (2009) Physics of the solar corona. Praxis ChichesterGoogle Scholar
  3. 3.
    Bahcall JN, Pinsonneault MH (2004) What do we (not) know theoretically about solar neutrino fluxes? Phys Rev Lett 92:121301Google Scholar
  4. 4.
    Bahcall JN et al (1963) Solar neutrino flux. Astrophys Jour 137:344–345ADSCrossRefGoogle Scholar
  5. 5.
    Bahcall JN et al (1997) Are standard solar models reliable? Phys Rev Lett 78:171–174ADSCrossRefGoogle Scholar
  6. 6.
    Bard E et al. (1997) Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records, Earth Planet Sci Lett 150: 453–462Google Scholar
  7. 7.
    Bethe HA (1939) Energy production in stars. Phys Rev 55:434–456ADSCrossRefGoogle Scholar
  8. 8.
    Blackman EG (2018) www.pas.rochester.edu accessed November 2018
  9. 9.
    Boddie W L (1967) An experimental study of radio-frequency induction heating of a partly ionized monatomic gas in a supersonic flow regime. PhD thesis, Rice Univ, Houston TXGoogle Scholar
  10. 10.
    Boger J, Hahn RL, Cumming JB (2000) Do statistically significant correlations exist between the Homestake solar neutrino data and sunspots? Astrophys Jour 537:1080–1085,  https://doi.org/10.1086/309069ADSCrossRefGoogle Scholar
  11. 11.
    Borexino Collaboration (2014) Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512:383–386Google Scholar
  12. 12.
    Brandt PN et al (1988) Vortex flow in the solar photosphere. Nature 335:238–24ADSCrossRefGoogle Scholar
  13. 13.
    Brown GE, Lee S (2009) Hans Albrecht Bethe. Biog Mem, Nat Acad Sci, Washington DCGoogle Scholar
  14. 14.
    Burch JL, Moore TE, Torbert RB, Giles BL (2016) Magnetospheric multiscale overview and science objectives. Space Sci Rev 199:5–21ADSCrossRefGoogle Scholar
  15. 15.
    Cappelleri D et al. (2014) Towards mobile microrobot swarms for additive micromanufacturing, Int J Adv Robotic Syst 11: 150,  https://doi.org/10.5772/58985CrossRefGoogle Scholar
  16. 16.
    Cargill P (2013) From flares to nanoflares: magnetic reconnection on the Sun. Astron Geophys 54:3.16–3.20CrossRefGoogle Scholar
  17. 17.
    Chertkov AD, Arkhipov YuV (1994) Induction heating of corona and acceleration of solar wind. Proc 1992 STEP/5th COSPAR Coll, Pergamon, Oxford, 117–120Google Scholar
  18. 18.
    Christie S, Hannah IG, Krucker S, McTiernan J, Lin RP (2008) RHESSI microflare statistics. I. Flare-finding and frequency distributions. Astrophys Jour 677:1385-Google Scholar
  19. 19.
    de Moortel I, Browning P (2015) Recent advances in coronal heating. Phil Trans Roy Soc A 373:20140269Google Scholar
  20. 20.
    Fiorentini G, Ricci B (2002) What have we learnt about the Sun from the measurement of the 8B neutrino flux? Phys Lett B 526:186–190ADSCrossRefGoogle Scholar
  21. 21.
    Gangadhara RT et al (2014) Generation of magnetic structures in the solar photosphere. Astrophys J 788:135ADSCrossRefGoogle Scholar
  22. 22.
    Gans PJ (1993) Joule-Thomson expansion. Tcc.iesl.forth.gr/education/local/Labs-PC-II/JT.pdfGoogle Scholar
  23. 23.
    Gay-Lussac LJ (1807) Premier essai pour déterminer les variations de température qu’éprouvent les gaz en changeant de densité, et considérations sur leur capacité pour le calorique, Mém Phys Chim Soc Arcueil 1:180–203Google Scholar
  24. 24.
    Gold L (1964) Nature of the Joule-Thomson phenomenon in plasmas. Nuovo Cim 34:1371–1380ADSCrossRefGoogle Scholar
  25. 25.
    Guenther DB (2010) What is a Standard Solar Model? www.ap.stmarys.ca/~guenther/evolution/what_is_ssm.html
  26. 26.
    Guervilly C, Hughes DW, Jones CA (2015) Generation of magnetic fields by large-scale vortices in rotating convection, arXiv:1503.08599v1 [physics.flu-dyn].
  27. 27.
    Guervilly C., Hughes DW, Jones CA (2017) Large-scale-vortex dynamos in planar rotating convection, arXiv:1607.00824v2 [physics.flu-dyn].
  28. 28.
    Gurevich AV., Pariiskaya LV, Pitaevskii LP (1966) Self-similar motion of rarefied plasma. Sov Phys (Eng Trans) JETP 22: 449–454Google Scholar
  29. 29.
    Hannah I G et al (2011) Microflares and the statistics of X-ray flares. Space Sci Rev 159:263-ADSCrossRefGoogle Scholar
  30. 30.
    Hathaway D, Upton, HL, Colegrove O (2013) Giant convection cells found on the Sun. Science 342:1217–1219ADSCrossRefGoogle Scholar
  31. 31.
    Hendricks RC, Peller IC, Baron AK (1972) Joule-Thomson inversion curves and related coefficients for several simple fluids. NASA Tech Rep TN-D-6807, Washington DCGoogle Scholar
  32. 32.
    Joule JP (1845) On the changes of temperature produced by the rarefaction and condensation of air. Phil Mag XXVI:369–383Google Scholar
  33. 33.
    Kalkofen W (2008) Wave heating of the solar chromosphere. Jour Astron’ Astrophys 29:163–166ADSCrossRefGoogle Scholar
  34. 34.
    Kelvin Lord (Thomson W) (1862) On the age of the Sun’s heat. Macmillan’s Mag 5:388–393Google Scholar
  35. 35.
    Khomenko E, Collados E (2012) Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys J 747:87ADSCrossRefGoogle Scholar
  36. 36.
    Kontar EP, Hannah IG, MacKinnon AL (2008) Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop. Astron Astrophys 489: L57-L60ADSCrossRefGoogle Scholar
  37. 37.
    Kragh H (2016) The source of solar energy, ca. 1840–1910: from meteoric hypothesis to the radioactive speculation. arXiv:1609.02834v1[physics.hist-ph]
  38. 38.
    Leblanc Y, Dulk GA, Bougeret J-L (1998) Tracing the electron density from the corona to 1 AU, Solar Phys., 183,165–180.Google Scholar
  39. 39.
    Lemaire JF, Stegen K (2016) Improved determination of the temperature maximum in the solar corona. Solar Phys 291:3659–3683Google Scholar
  40. 40.
    Longcope DW, Tarr LA (2015) Relating magnetic to coronal heating. Phil Trans R Soc Lond 373:20140263Google Scholar
  41. 41.
    Mariska JT (1986) The quiet solar transition region. Annu Rev Astron Astrophys 24:23–48ADSCrossRefGoogle Scholar
  42. 42.
    Maytal B-Z, Pfotenhauer JM (2013) Miniature Joule-Thomson cryocooling. Springer, New York NYCrossRefGoogle Scholar
  43. 43.
    NASA (2013) How SDO sees the Sun. www.nasa.gov/content/goddard (accessed 11 Nov 2016)
  44. 44.
    Parnell CE, de Moortel I (2012) A contemporary view of coronal heating. Phil Trans Roy Soc A 370:3217–3240ADSCrossRefGoogle Scholar
  45. 45.
    Priest E (2014) Magnetohydrodynamics of the Sun. Cambridge Univ Press, CambridgeGoogle Scholar
  46. 46.
    Raisbeck G M et al. (2006) 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444:82–84ADSCrossRefGoogle Scholar
  47. 47.
    Shen L et al (2014) Proc IEEE Int Conf Communication Problem-Solving, Beijing, 394–396Google Scholar
  48. 48.
    Sturrock PA, Weber MA (2002) Comparative analysis of Gallex-GNO solar neutrino data and SOHO/MDI helioseismology data; further evidence of rotational modulation of the solar neutrino flux. Astrophys Jour 565:1366–1375ADSCrossRefGoogle Scholar
  49. 49.
    Thomson W & Joule JP (1853) On the thermal effects of fluids in motion. Phil Trans Roy Soc London 143: 357–365Google Scholar
  50. 50.
    Thorpe M L, Scammon LW (1969) Induction plasma heating: high power, low frequency operation and pure hydrogen heating. NASA, Washington DCGoogle Scholar
  51. 51.
    Vita-Finzi C (2013) Solar History. Springer, DordrechtCrossRefGoogle Scholar
  52. 52.
    Vita-Finzi C (2014) Towards a solar system timescale. Astron Geophys 55:4.27–4.29CrossRefGoogle Scholar
  53. 53.
    Vita-Finzi C (2016a) The solar chromosphere as induction disk and the inverse Joule-Thomson effect, arXiv:1609.00508v2[astro-ph.SR]
  54. 54.
    Vita-Finzi C (2016b)The contribution of the Joule-Thomson effect to solar coronal heating. arXiv:1612.07943[astro-ph.SR]
  55. 55.
    Wedemeyer-Böhm S et al (2012) Magnetic tornadoes as energy channels into the solar corona. Nature 486:505–508ADSCrossRefGoogle Scholar
  56. 56.
    Woods TN et al (2012) Extreme Ultraviolet variability experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science, instrument design, data products, and model developments. Solar Phys 275:115–143Google Scholar
  57. 57.
    Zhang RY (2012) A generalized approach to plainer induction heating magnetics. MS thesis, MITGoogle Scholar
  58. 58.
    Zhang J, Liu Y (2011) Ubiquitous rotating network magnetic fields and extreme-ultraviolet cyclones in the quiet Sun. Astrophys Jour Lett 741, L7ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesNatural History MuseumLondonUK

Personalised recommendations