The Solar Body

  • Claudio Vita-FinziEmail author


In the 1960s localised oscillations of the Sun’s surface were found to represent acoustic and other internal waves which were to reveal many features and processes of the solar interior. In contrast, despite prolonged observation of the Sun from telescopes, balloons and orbiting satellites, there is uncertainty over any surface evidence for gravitational interplay with the planets, the Schwabe and other activity cycles, and the mass loss expected from the solar wind and nuclear fusion. But the variegated ramifications of the subject, including relativity and stellar evolution, guarantee further astrometric innovations and refinements.


  1. 1.
    Bahcall JN, Pinsonneault MH, Basu S (2001) Solar Models: currently epoch and time dependences. Astrophys J 555:990–1012Google Scholar
  2. 2.
    Demarque P, Guenther DB (1999) Helioseismology: probing the interior of a star. Proc Nat Acad Sci 96:5356–5359ADSCrossRefGoogle Scholar
  3. 3.
    Deubner F-L (1975) Observations of low wavenumber nonradial eigenmodes of the Sun. Astron Astrophys 44:371–375Google Scholar
  4. 4.
    Duvall TL, Gizon L (2000) Time-distance helioseismology with f modes as a method for measurement of near-surface flows. Solar Phys 192:177–191Google Scholar
  5. 5.
    Emilio M et al (2000) On the constancy of the solar diameter. Astrophys J 543:1007–1010ADSCrossRefGoogle Scholar
  6. 6.
    Emilio M et al (2015) Measuring the solar radius from space during the 2012 Venus transit. Astrophys J 798:48ADSCrossRefGoogle Scholar
  7. 7.
    Frazier EN (1968) A spatio-temporal analysis of velocity fields in the solar photosphere. Z Astrophys 68:345–356Google Scholar
  8. 8.
    Genova A et al (2018) Solar system expansion and strong equivalence principle as seen by the MESSENGER mission. Nature Comm 9:289Google Scholar
  9. 9.
    Haberreiter M, Schmutz W, Kosovichev AG (2008) Solving the discrepancy between the seismic and photospheric solar radius. Astrophys J 675:L53-L56ADSCrossRefGoogle Scholar
  10. 10.
    Hestroffer D, Magnan C (1998) Wavelength dependency of the solar limb darkening. Astron Astrophys 333:338–342Google Scholar
  11. 11.
    Howard T (2014) Space weather and coronal mass ejection. Springer, DordrechtGoogle Scholar
  12. 12.
    Ikhlef R et al (2013) PICARD-SOL. Presentation and results. CNES, ParisGoogle Scholar
  13. 13.
    Krasinsky GA, Blumberg VA (2004) Secular increase of astronomical unit. Dyn Astro 90: 267–288Google Scholar
  14. 14.
    Kuhn JR, Bush R, Emilio M, Scholl IF (2012) The precise solar shape and its variability. Science 337:1638–1640ADSCrossRefGoogle Scholar
  15. 15.
    Kuhn JR, Bush R, Scheick X, Scherrer P (1998) The Sun’s shape and brightness. Nature 392:155–157ADSCrossRefGoogle Scholar
  16. 16.
    Kuhn JR et al (2012) The precise solar shape and its variability. Science 337:1638–1640ADSCrossRefGoogle Scholar
  17. 17.
    Lämmerzahl C, Preuss O, Dittus H (2017) Is the physics within the solar system really understood? In Dittus H et al (eds) Lasers, clocks and drag-free control, Springer Heidelberg, 75–101Google Scholar
  18. 18.
    Leighton RB, Noyes RW, Simon GW (1962) Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys J 135: 474–499ADSCrossRefGoogle Scholar
  19. 19.
    Mishra W et al (2018) Solar cycle variation of coronal mass ejections contribution to the mass flux. arXiv:1805.07593v1[astro-ph.SR]
  20. 20.
    Miura T et al (2009) Secular increase of the Astronomical Unit: a possible explanation in terms of the total angular momentum conservation law. arXiv:0905.30008v3 [astr-ph.EP]
  21. 21.
    NASA (2008) Sun not a perfect sphere. Science News 6 October 2008 at sciencedaily.comGoogle Scholar
  22. 22.
    Noerdlinger P (2008) Solar mass loss, the Astronomical Unit, and the scale of the Solar System. arXiv:0801.3807 [astr-ph]
  23. 23.
    Parkinson JH, Morrion LV, Stephenson FR (1980) The constancy of the solar diameter over the past 250 years. Nature 288:548–551ADSCrossRefGoogle Scholar
  24. 24.
    Ribes E et al (1991) The variability of the solar diameter. In Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in time, Univ of Arizona, Tucson, 59–97Google Scholar
  25. 25.
    Rozelot JP, Damiani C (2011) History of solar oblateness measurements and interpretation. Europ Phys J H 36:407–436ADSCrossRefGoogle Scholar
  26. 26.
    Rozelot JP, Fazel Z (2013) Revisiting the solar oblateness: is relevant astrophysics possible? Sol Phys 287:161–170ADSCrossRefGoogle Scholar
  27. 27.
    Rozelot JP, Kosovichev AG, Kilcik A (2018) How big is the Sun: solar diameter changes over time. Sun Geosph 13:63–68Google Scholar
  28. 28.
    Rozelot JP, Kosovichev AG, Kilcik A (2016) A brief history of the solar diameter measurements: the critical quality assessment of the existing data. arXiv:1609.02710
  29. 29.
    Sakurai K, Haubold HJ, Shirai T (2911) The variation of the solar neutrino fluxes over time in the Homestake, GALLEX(GNO) and Super-Kamiokande experiments. arXiv:1111.5530v1 [physics.gen-ph]
  30. 30.
    Sheeley NR et al (1999) Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J Geophys Res: Space Phys 104:A11CrossRefGoogle Scholar
  31. 31.
    Sofia S, Endal AS (1979) Solar constant: constraints on possible variations derived from solar diameter measurements. Science 204:1306–13084.ADSCrossRefGoogle Scholar
  32. 32.
    Sofia S et al (2013) Variation of the diameter of the Sun as measured by the Solar Disk Sextant (SDS). MNRAS 436:2151–2169ADSCrossRefGoogle Scholar
  33. 33.
    Ulrich RK (1970) The five-minute oscillations on the solar surface. Astrophys J 162:993ADSCrossRefGoogle Scholar
  34. 34.
    Vita-Finzi C (2002) Monitoring the Earth. Terra, HarpendenGoogle Scholar
  35. 35.
    Vita-Finzi C (2013) Solar history. Springer, DordrechtCrossRefGoogle Scholar
  36. 36.
    Yashiro S et al (2004) A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res 109, A07105Google Scholar
  37. 37.
    Zuber M, Smith DE (2017) Measuring solar mass loss and internal structure from monitoring the orbits of the planets. Lunar Planet Sci LVII, #2281Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesNatural History MuseumLondonUK

Personalised recommendations