A Commonplace Star

  • Claudio Vita-FinziEmail author


In 1911 the Sun shed its unique role in humanity’s universe and joined the ranks of several million G2V yellow dwarf stars; whatever the resulting loss of prestige by association, humanity has thereby gained greatly in its understanding of solar history and probable future by analogy with kindred stars and the calibration of models of solar evolution. The Sun’s composition and inner workings were revealed by spectroscopy and nuclear physics; advances in solar physics and chemistry illuminate other stars, solar systems and galaxies, to the benefit of our cosmic understanding. Numerous devices now monitor the Sun, their development prompted by necessity as well as curiosity.


  1. 1.
    Bugg J (2017) On the origin of faeces (review). Times Lit Suppl 27 oct no 5978, p. 33Google Scholar
  2. 2.
    Carrington RC (1859) Description of a singular appearance seen in the Sun on September 1, 1859. Mon Not Roy Astron Soc 20:13–15ADSCrossRefGoogle Scholar
  3. 3.
    Charlier CVL (1921) Lectures on stellar statistics. Scientia, LundGoogle Scholar
  4. 4.
    Dudok de Wit T, Kretzschmar M, Aboudarham J, Amblard P-O, Lilensten J (2008) Which solar EUV indices are best for reconstructing the solar EUV irradiance? Adv Space Res 42:903–911ADSCrossRefGoogle Scholar
  5. 5.
    Eddington AS (1914) Stellar movements and the structure of the Universe. Macmillan, LondonGoogle Scholar
  6. 6.
    Encrenaz T (2008) Remote sensing analysis of solar-system objects Phys ScrT130: 014037ADSCrossRefGoogle Scholar
  7. 7.
    Gingerich O (2013) The critical importance of Russell’s diagram. arXiv:1302.0862v1 [physics.hist-ph]
  8. 8.
    Golub L (2003) Solar observation from space. Rev Sci Instr 74:4583ADSCrossRefGoogle Scholar
  9. 9.
    Gustafsson B (1998) Is the Sun a Sun-like star? Space Sci Rev 419–428Google Scholar
  10. 10.
    Gustafsson B (2008) Is the Sun unique as a star—and if so, why? Phys Scr T130: 01430Google Scholar
  11. 11.
    Gustafsson B, Meléndez J, Asplund M, Yong D (2010) The chemical composition of solar-type stars in comparison with that of the Sun. Astrophys Space Sci 328: 185–191ADSCrossRefGoogle Scholar
  12. 12.
    Handler G (2013) Asteroseismology. In: Oswalt TD et al (ed) Planets, stars and stellar systems, v 4. Springer, Netherlands, 207–241CrossRefGoogle Scholar
  13. 13.
    Hertzsprung E (1911) Über die Verwendung photographischer effektiver Wellelängen zur Bestimmung von Farbenäquivalenten. Pub Astrophys Obs Potsdam 22:63Google Scholar
  14. 14.
    Hoyle F, Lyttleton RA (1950) Variations in solar radiation and the cause of ice ages. J Glaciol 1:453–455ADSCrossRefGoogle Scholar
  15. 15.
    Husser T-O et al (2013) A new extensive library of phoenix stellar atmospheres and synthetic spectra. AsrXiv:1303.5632v2 [astro-ph.SR]Google Scholar
  16. 16.
    Jovanovic N, Schwab C, Cvetojevic N, Guyon O, Martinache F (2016) Enhancing stellar spectroscopy with extreme adaptive optics and photonics. Pub Astr Soc Pacific 128:121001ADSCrossRefGoogle Scholar
  17. 17.
    Lindegren L et al (2016) Gaia data release 1. Astrometry: one billion positions, two million proper motions, and parallaxes. Astron Astrophys 595:A4Google Scholar
  18. 18.
    Lloyd GER (1996) Adversaries and authorities. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Martens PCH et al (2012) Computer vision for the Solar Dynamics Observatory (SDO). Solar Phys 275:79–113Google Scholar
  20. 20.
    Monroe, TR and 15 others (2013) High precision abundances of the old solar twin HIP 102152: insights on Li depletion from the oldest sun. ApJL 771:L31Google Scholar
  21. 21.
    Morgan WW, Keenan PC, Kellman E (1943) An atlas of stellar spectra with an outline of spectral classification. Astrophys Monog, Univ Chicago Press, Chicago IllGoogle Scholar
  22. 22.
    Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–452ADSCrossRefGoogle Scholar
  23. 23.
    Noyes RW, Baliunas SL, Guinan EF 1991 what can other stars tell us about the Sun? In Cox AN, Livingston WC, Matthews MS (eds) Solar interior and atmosphere, Univ Ariz Press, Tucson, 1161–1185Google Scholar
  24. 24.
    Payne CH (1925) Stellar atmospheres. Harvard Univ Monog, Cambridge MassGoogle Scholar
  25. 25.
    Russell HN (1913) ‘Giant’ and ‘dwarf’ stars. Observ 36:324–329Google Scholar
  26. 26.
    Russell HN (1914) Relations between the spectra and other characteristics of the stars. Pop Astron 22:275–294Google Scholar
  27. 27.
    Saha MN (1921) On a physical theory of stellar spectra. Proc Roy Soc, Scholar
  28. 28.
    Savanov IS, Dmitrienko ES (2017) Spots and activity of solar-type stars from Kepler observations. Astron Rep 61:461–467ADSCrossRefGoogle Scholar
  29. 29.
    Shaviv NJ, Prokoph A, Veizer J (2014) Is the Solar System’s galactic motion imprinted in the Phanerozoic climate? Sci Rep 4, 6150Google Scholar
  30. 30.
    Sobel D (2016) The glass universe. 4th Estate, LondonGoogle Scholar
  31. 31.
    Turck-Chièze S (2016) The Standard Solar Model and beyond. Jour Phys, Conf Ser 665:012078Google Scholar
  32. 32.
    Vidal-Madjar A et al (1978) Is the solar system entering a nearby interstellar cloud? Astrophys J 223:589–600ADSCrossRefGoogle Scholar
  33. 33.
    Vita-Finzi C (2015) A perfect solar storm. Proc Am Phil Soc 159:1–6Google Scholar
  34. 34.
    Wetherill GW (1996) The formation and habitability of extra-solar planets. Icarus 119 219–238ADSCrossRefGoogle Scholar
  35. 35.
    Wiens RC, Bochsler P, Burnett DS, Wimmer-Schweingruber RF (2004) Solar and solar-wind isotopic compositions. Earth Planet Sci Lett 222:697–71ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesNatural History MuseumLondonUK

Personalised recommendations