Advertisement

Towards Generating Stylistic Dialogues for Narratives Using Data-Driven Approaches

  • Weilai XuEmail author
  • Charlie Hargood
  • Wen Tang
  • Fred Charles
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11318)

Abstract

Recently, there has been a renewed interest in generating dialogues for narratives. Within narrative dialogues, their structure and content are essential, though style holds an important role as a mean to express narrative dialogue through telling stories. Most existing approaches of narrative dialogue generation tend to leverage hand-crafted rules and linguistic-level styles, which lead to limitations in their expressivity and issues with scalability. We aim to investigate the potential of generating more stylistic dialogues within the context of narratives. To reach this, we propose a new approach and demonstrate its feasibility through the support of deep learning. We also describe this approach using examples, where story-level features are analysed and modelled based on a classification of characters and genres.

Keywords

Dialogue generation Interactive narratives Dialogue style Neural networks 

References

  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint: arXiv:1409.0473
  2. 2.
    Bohus, D., Rudnicky, A.I.: Ravenclaw: dialog management using hierarchical task decomposition and an expectation agenda. In: Eighth European Conference on Speech Communication and Technology (2003)Google Scholar
  3. 3.
    Bowden, K.K., Lin, G.I., Reed, L.I., Fox Tree, J.E., Walker, M.A.: M2D: monolog to dialog generation for conversational story telling. In: Nack, F., Gordon, A.S. (eds.) ICIDS 2016. LNCS, vol. 10045, pp. 12–24. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48279-8_2CrossRefGoogle Scholar
  4. 4.
    Burgan, D.: Dialogue systems and dialogue management. Technical report, DST Group Edinburgh Edinburgh SA Australia (2016)Google Scholar
  5. 5.
    Cavazza, M., Charles, F.: Dialogue generation in character-based interactive storytelling. In: Proceedings of the First AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 21–26. AAAI Press (2005)Google Scholar
  6. 6.
    Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In: Proceedings of ACL 2008: HLT, pp. 789–797 (2008)Google Scholar
  7. 7.
    Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: recent advances and new frontiers. ACM SIGKDD Explor. Newsl. 19(2), 25–35 (2017)CrossRefGoogle Scholar
  8. 8.
    Elson, D.K., McKeown, K.R.: A tool for deep semantic encoding of narrative texts. In: Proceedings of the ACL-IJCNLP 2009 Software Demonstrations, pp. 9–12. Association for Computational Linguistics (2009)Google Scholar
  9. 9.
    Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gervás, P., Díaz-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based on CBR. In: Macintosh, A., Ellis, R., Allen, T. (eds.) SGAI 2004, pp. 33–46. Springer, London (2005).  https://doi.org/10.1007/1-84628-103-2_3CrossRefGoogle Scholar
  11. 11.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  12. 12.
    Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., Dolan, B.: A persona-based neural conversation model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Long Papers, vol. 1, pp. 994–1003 (2016)Google Scholar
  13. 13.
    Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., Gao, J.: Deep reinforcement learning for dialogue generation. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1192–1202 (2016)Google Scholar
  14. 14.
    Lin, G., Walker, M.: Stylistic variation in television dialogue for natural language generation. In: Proceedings of the Workshop on Stylistic Variation, pp. 85–93 (2017)Google Scholar
  15. 15.
    Lin, Z., et al.: A structured self-attentive sentence embedding (2017)Google Scholar
  16. 16.
    Martin, L., et al.: Event representations for automated story generation with deep neural nets. In: AAAI Conference on Artificial Intelligence (2018)Google Scholar
  17. 17.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)Google Scholar
  18. 18.
    Pichotta, K., Mooney, R.J.: Learning statistical scripts with LSTM recurrent neural networks. In: AAAI, pp. 2800–2806 (2016)Google Scholar
  19. 19.
    Porteous, J., Cavazza, M., Charles, F.: Applying planning to interactive storytelling: narrative control using state constraints. ACM Trans. Intell. Syst. Technol. (TIST) 1(2), 10 (2010)Google Scholar
  20. 20.
    Porteous, J., Cavazza, M., Charles, F.: Narrative generation through characters’ point of view. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 1297–1304. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  21. 21.
    Porteous, J., Charles, F., Cavazza, M.: Networking: using character relationships for interactive narrative generation. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 595–602. International Foundation for Autonomous Agents and Multiagent Systems (2013)Google Scholar
  22. 22.
    Riedl, M.O., Young, R.M.: Narrative planning: balancing plot and character. J. Artif. Intell. Res. 39, 217–268 (2010)CrossRefGoogle Scholar
  23. 23.
    Rishes, E., Lukin, S.M., Elson, D.K., Walker, M.A.: Generating different story tellings from semantic representations of narrative. In: Koenitz, H., Sezen, T.I., Ferri, G., Haahr, M., Sezen, D., C̨atak, G. (eds.) ICIDS 2013. LNCS, vol. 8230, pp. 192–204. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02756-2_24CrossRefGoogle Scholar
  24. 24.
    Rowe, J.P., Ha, E.Y., Lester, J.C.: Archetype-driven character dialogue generation for interactive narrative. In: Prendinger, H., Lester, J., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 45–58. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85483-8_5CrossRefGoogle Scholar
  25. 25.
    Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: an inquiry into human knowledge structures (1977)Google Scholar
  26. 26.
    Serban, I.V., Lowe, R., Henderson, P., Charlin, L., Pineau, J.: A survey of available corpora for building data-driven dialogue systems (2015). arXiv preprint: arXiv:1512.05742
  27. 27.
    Tozzo, A., Jovanovic, D., Amer, M.: Neural event extraction from movies description. In: Proceedings of the First Workshop on Storytelling, pp. 60–66 (2018)Google Scholar
  28. 28.
    Vinyals, O., Le, Q.: A neural conversational model (2015). arXiv preprint: arXiv:1506.05869
  29. 29.
    Walker, M., Lin, G., Sawyer, J.: An annotated corpus of film dialogue for learning and characterizing character style. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012) (2012)Google Scholar
  30. 30.
    Walker, M.A., Grant, R., Sawyer, J., Lin, G.I., Wardrip-Fruin, N., Buell, M.: Perceived or not perceived: film character models for expressive NLG. In: Si, M., Thue, D., André, E., Lester, J.C., Tanenbaum, J., Zammitto, V. (eds.) ICIDS 2011. LNCS, vol. 7069, pp. 109–121. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25289-1_12CrossRefGoogle Scholar
  31. 31.
    Wen, T., et al.: A network-based end-to-end trainable task-oriented dialogue system. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, vol. 1, pp. 438–449 (2017)Google Scholar
  32. 32.
    Wen, T.H., Gasic, M., Mrkšić, N., Su, P.H., Vandyke, D., Young, S.: Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1711–1721 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Weilai Xu
    • 1
    Email author
  • Charlie Hargood
    • 1
  • Wen Tang
    • 1
  • Fred Charles
    • 1
  1. 1.Faculty of Science and Technology, Creative Technology DepartmentBournemouth UniversityPooleUK

Personalised recommendations