Advertisement

Automatic Detection of Conflicts in Complex Narrative Structures

  • Nicolas SzilasEmail author
  • Sergio Estupiñán
  • Urs Richle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11318)

Abstract

The central notion of conflict in drama is well-acknowledged but not properly formalized. Computational models of conflict tend to target one specific type of conflict and consequently lose the global point of view on the story. Using a model of dramatic structure, this article specifies a number of conflict types within a unified model and proposes an algorithm to automatically extract all conflicts within a narrative structure. The algorithm is then tested on a storyworld that shows as many as 31 coexisting conflicts. Finally, a cluster analysis on these conflicts is performed, showing that in the considered case, conflicts can be reduced to three main “conflict groups.”

Keywords

Interactive narrative Computational models of narrative Conflict Rules 

Notes

Acknowledgements

This research has been supported by the Swiss National Science Foundation under grant No. 159605 (Fine-grained Evaluation of the Interactive Narrative Experience).

References

  1. 1.
    Barber, H., Kudenko, D.: Dynamic generation of dilemma-based interactive narratives. In: Proceedings of Third Conference on Artificial Intelligence and Interactive Digital Entertainment – AIIDE, pp. 2–7. AAAI Press, Menlo Park (2007)Google Scholar
  2. 2.
    Battaglino, C., Damiano, R., Torino, U.: A character model with moral emotions: preliminary evaluation. In: Finlayson, M.A., Meister, J.C., Bruneau, E.G. (eds.) 5th Workshop on Computational Models of Narrative (CMN 2014), pp. 24–41. OASICS (2014)Google Scholar
  3. 3.
    Benabbou, A., Lourdeaux, D., Lenne, D.: Dynamic generation of dilemmas in virtual learning environments for non-technical skills training. In: Wang, Y., Howard, N., Widrow, B., Plataniotis, Y., Zadeh, L.A. (eds.) IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 231–234. IEEE (2016)Google Scholar
  4. 4.
    Cavazza, M., Charles, F., Mead, S.J.: Generation of humorous situations in cartoons through plan-based formalisations. In: Nijholt, A., Stock, O., Dix, A., Morkes, J. (eds.) ACM CHI-2003 Workshop: Humor Modeling in the Interface. University of Twente, Twente (2003)Google Scholar
  5. 5.
    Egri, L.: The Art of Dramatic Writing. Simon & Shuster, New York (1946)Google Scholar
  6. 6.
    Field, S.: Screenplay – The Foundations of Screenwriting. Dell Publishing, New York (1984)Google Scholar
  7. 7.
    Greimas, A.J.: Sémantique structurale. Presses universitaires de France, Paris (1966)Google Scholar
  8. 8.
    Harmon, S.: An expressive dilemma generation model for players and artificial agents. In: The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-2016), pp. 176–182 (2016)Google Scholar
  9. 9.
    Lavandier, Y.: La dramaturgie. Le clown et l’enfant, Cergy, France (1997)Google Scholar
  10. 10.
    Lévi-Strauss, C.: Anthropologie Structurale. Plon, Paris (1958)Google Scholar
  11. 11.
  12. 12.
    McKee, R.: Story: Substance, Structure, Style, and the Principles of Screenwriting. Harper Collins, New York (1997)Google Scholar
  13. 13.
    Nichols, B.: Ideology and the image. Indiana University Press, Bloomington (1981)Google Scholar
  14. 14.
    Polti, G.: Les trente-six situations dramatiques. Mercure de France, Paris (1903)Google Scholar
  15. 15.
    Saillenfest, A.: Modélisation Cognitive de la Pertinence Narrative en vue de l’Évaluation et de la Génération de Récits. Télécom ParisTech (2015)Google Scholar
  16. 16.
    Seger, L.: Making a Good Script Great. Samuel French Trade, Hollywood (1989)Google Scholar
  17. 17.
    Souriau, E.: Les deux cent mille Situations dramatiques. Flammarion, Paris (1950)Google Scholar
  18. 18.
    Szilas, N.: A computational model of an intelligent narrator for interactive narratives. Appl. Artif. Intell. 21(8), 753–801 (2007)CrossRefGoogle Scholar
  19. 19.
    Szilas, N.: Modeling and representing dramatic situations as paradoxical structures. Digit. Scholarsh. Humanit. 32, 2 (2017)Google Scholar
  20. 20.
    Szilas, N.: Structural Analysis of the Aesop’s Fables. http://tecfalabs.unige.ch/mediawiki-narrative/index.php/Aesop’s_Fables
  21. 21.
    Szilas, N., Estupiñán, S., Richle, U.: Qualifying and quantifying interestingness in dramatic situations. In: Nack, F., Gordon, A.S. (eds.) ICIDS 2016. LNCS, vol. 10045, pp. 336–347. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48279-8_30CrossRefGoogle Scholar
  22. 22.
    Truby, J.: Anatomy of Story. Faber and Faber, New York (2007)Google Scholar
  23. 23.
    Vale, E.: The Technique of Screenplay Writing. Grosset & Dunlap, New York (1973)Google Scholar
  24. 24.
    Ware, S.G., Young, R.M.: CPOCL: a narrative planner supporting conflict. In: Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 97–102. AAAI Press, Palo Alto (2011)Google Scholar
  25. 25.
    Nothing For Dinner. http://nothingfordinner.org

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nicolas Szilas
    • 1
    Email author
  • Sergio Estupiñán
    • 1
  • Urs Richle
    • 1
  1. 1.TECFA, FPSE, University of GenevaGeneva 4Switzerland

Personalised recommendations