Analysis of Action Oriented Effects on Perceptual Process of Object Recognition Using Physiological Responses

  • Shanu SharmaEmail author
  • Anju Mishra
  • Sanjay Kumar
  • Priya Ranjan
  • Amit Ujlayan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11278)


Action on any objects provides perceptual information about the environment. There is substantial evidence that human visual system responds to action possibilities in an image as perceiving any one’s action stimulates human motor system. However very limited studies have been done to analyze the effect of object affordance during action perception and execution. To study the effect of object affordance on human perception, in this paper we have analyzed the human brain signals using EEG based oscillatory activity of brain. EEG responses corresponding to images of objects shown with correct, incorrect and without grips are examined. Exploration of different gripping effects has been done by extracting Alpha and Beta frequency bands using Discrete Wavelet Transform based band extraction method, then baseline normalized power of Alpha and Beta frequency bands at 24 positions of motor area of left and right side of brain are examined. The result shows that twelve pooled electrodes at central and central parietal region provides a clear discrimination among the three gripping cases in terms of calculated power. The presented research explores new applicabilities of object affordance to develop a variety of Brain Computer Interface (BCI) based devices and to improve motor imagery ability among motor disorder related patients.


Visual perception Action recognition Congruent-Incongruent grip EEG signals DWT 


  1. 1.
    Noe, A.: Action in Perception. A Bradford Book (2006)Google Scholar
  2. 2.
    Gibson, J.J.: The Theory of Affordances-The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  3. 3.
    Norman, D.A.: The Psychology of Everyday Things. Basic Books, New York (1988)Google Scholar
  4. 4.
    Hailperin-Lausch, R.: A proposed EEG study: the role of object affordance during action observation. IU J. Undergrad. Res. 3(1), 44–47 (2017)Google Scholar
  5. 5.
    Hassanien, A.E., Azar, A.T. (eds.): Brain-Computer Interfaces: Current Trends and Applications. ISRL, vol. 74. Springer, Cham (2015). Scholar
  6. 6.
    Kim, D.-E., Yu, J.-H., Sim, K.-B.: EEG feature classification based on grip strength for BCI applications. Int. J. Fuzzy Log. Intell. Syst. 15(4), 277–282 (2015)CrossRefGoogle Scholar
  7. 7.
    Chaudhari, R., Galiyawala, H.J.: A review on motor imagery signal classification for BCI. Signal Process. Int. J. (SPIJ) 11(2), 16 (2017)Google Scholar
  8. 8.
    Amin, H.U., Mumtaz, W., Subhani, A.R., Saad, M.N.M., Malik, A.S.: Classification of EEG signals based on pattern recognition approach. Front. Comput. Neurosci. 11 (2017).
  9. 9.
    Choi, S.H., Lee, M., Wang, Y., Hong, B.: Estimation of optimal location of EEG reference electrode for motor imagery based BCI using fMRI. In: International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, pp. 1193–1196. IEEE (2006)Google Scholar
  10. 10.
    Schuch, S., Bayliss, A.P., Klein, C., Tipper, S.P.: Attention modulates motor system activation during action observation: evidence for inhibitory rebound. Exp. Brain Res. 205(2), 235–249 (2010). Scholar
  11. 11.
    Oberman, L.M., Pineda, J.A., Ramachandran, V.S.: The human mirror neuron system: a link between action observation and social skills. Soc. Cogn. Affect. Neurosci. 2(1), 62–66 (2007). Scholar
  12. 12.
    Kumar, S., Yoon, E.Y., Humphreys, G.W.: Perceptual and motor-based responses to hand actions on objects: evidence from ERPs. Exp. Brain Res. 220(2), 153–164 (2012)CrossRefGoogle Scholar
  13. 13.
    Kumar, S., Riddoch, M.J., Humphreys, G.: Mu rhythm desynchronization reveals motoric influences of hand action on object recognition. Front. Hum. Neurosci. 7(66) (2013).
  14. 14.
    Li, L., Wang, J., Xu, G., Li, M., Xie, J.: The study of object-oriented motor imagery based on EEG suppression. PLoS ONE 10(12) (2015). Scholar
  15. 15.
    Sreeja, S.R., Rabha, J., Samanta, D., Mitra, P., Sarma, M.: Classification of motor imagery based EEG signals using sparsity approach. In: Horain, P., Achard, C., Mallem, M. (eds.) IHCI 2017. LNCS, vol. 10688, pp. 47–59. Springer, Cham (2017). Scholar
  16. 16.
    Roy, R., Sikdar, D., Mahadevappa, M., Kumar, C.: EEG based motor imagery study of time domain features for classification of power and precision hand grasps. In: 8th International IEEE EMBS Conference on Neural Engineering Shanghai, China, 25–28 May 2017Google Scholar
  17. 17.
    Sivakami, A., Shenbaga Devi, S.: Analysis of EEG for motor imagery based classification of hand activities. Int. J. Biomed. Eng. Sci. (IJBES) 2(3), 11–22 (2015)Google Scholar
  18. 18.
    Lange, G., Low, C.Y., Johar, K., Hanapiah, F.A., Kamaruzaman, F.: Classification of electroencephalogram data from hand grasp and release movements for BCI controlled prosthesis. Procedia Technol. 26, 374–381 (2016)CrossRefGoogle Scholar
  19. 19.
    Mohammad, H.A., Samaha, A., AlKamha, K.: Automated classification of L/R hand movement EEG signals using advanced feature extraction and machine learning. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4(6), 207–212 (2013)Google Scholar
  20. 20.
    Holler, Y., et al.: Comparison of EEG-features and classification methods for motor imagery in patients with disorders of consciousness. PLoS ONE 8(11) (2013). Scholar
  21. 21.
    Gupta, S.S., Agarwal, S.: Classification and analysis of EEG signals for imagined motor movements. In: IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI), pp. 1–7. IEEE (2015)Google Scholar
  22. 22.
    Matsumoto, J., Fujiwara, T., Takahashi, O., Liu, M., Kimura, A., Ushiba, J.: Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J. NeuroEngineering Rehabil. 7(27) (2010). Scholar
  23. 23.
    Batres-Mendoza, P., et al.: Improving EEG-based motor imagery classification for real-time applications using the QSA method. Comput. Intell. Neurosci. (2017). Scholar
  24. 24.
    Hari Krishna, D., Pasha, I.A., Savithri, T.S.: Classification of EEG motor imagery multi class signals based on cross correlation. Procedia Comput. Sci. 85, 490–495 (2016). Scholar
  25. 25.
    Vivas, E.L.A., García-González, A., Figueroa, I., Fuentes, R.Q.: Discrete wavelet transform and ANFIS classifier for brain-machine interface based on EEG. In: 6th International Conference on Human System Interactions (HSI), Sopot, Poland, pp. 137–144. IEEE (2013)Google Scholar
  26. 26.
    Shedeed, H.A., Issa, M.F.: Brain-EEG signal classification based on data normalization for controlling a robotic arm. Int. J. Tomogr. Simul. 29, 72–85 (2016)Google Scholar
  27. 27.
    Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084–1093 (2007). Scholar
  28. 28.
    Article on Wavelet db8. Accessed 20 Mar 2018
  29. 29.
    Cohen, M.X.: Chapter 18-Analyzing neural time series data: theory and practice. MIT Press (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shanu Sharma
    • 1
    Email author
  • Anju Mishra
    • 2
  • Sanjay Kumar
    • 3
  • Priya Ranjan
    • 4
  • Amit Ujlayan
    • 5
  1. 1.Department of CSE, ASETAmity UniversityNoidaIndia
  2. 2.Department of IT, ASETAmity UniversityNoidaIndia
  3. 3.Department of PsychologyOxford Brookes UniversityOxfordUK
  4. 4.Department of EEE, ASETAmity UniversityNoidaIndia
  5. 5.School of Vocational Studies and Applied SciencesGBUGreater NoidaIndia

Personalised recommendations